
Exploring Aspects of Formal Specification Engineering
Soaibuzzaman

Bauhaus-University Weimar, Germany

Introduction & Motivation
Formal methods are powerful, but their notoriously steep learning curve hinders adoption. To
build better tools and teaching strategies, we must first answer a fundamental question: How do
novices actually write formal specifications?

The Problem: The actual step-by-step
process of how beginners learn, their
mistakes, revisions, and strategies, is
largely an unobserved ‘black box.’
Our Approach: We captured thousands of
fine-grained ‘edit paths’ from students
using our Formal Methods Playground, a
web-based learning platform.
The Contribution: This provides a unique,
side-by-side view into the real-world
struggles of learning two distinct
formalisms: SMT-LIB (for problem-solving)
and Alloy (for modeling).

The Formal Methods Playground

Formal Methods Playground is a web application for writing and analyzing specifications in
various modeling and specification languages.
Offers a user-friendly interface for creating, editing, and evaluating formal specifications
without needing local installation.
Provides features like sharing specifications through permalinks, storing specifications,
syntax highlighting, and more.
Equips language support for various formal specification languages, including SMT-LIB and
Spectra.
Open source and extensible, allowing users to contribute new languages and features.

Figure 1. The Formal Methods Playground, showing an example Alloy specification.

Datasets
Our analysis is built on two novel datasets, FMPsmt and FMPals, capturing the complete edit history
of novices writing formal specifications on the FM Playground.
Reconstructing the Edit Path
Every time a user runs the specification, we
capture a complete snapshot of their doc-
ument and link it to the previous version,
along with the timestamp. This creates an
edit path–a fine-grained, step-by-step record
of the specification’s evolution.
This structure allows us to precisely analyze:
User workflow and session length.
The introduction and correction of errors.
The distance between edits.

7296.als 7297.als 7381.als 7382.als 7383.als

7550.als 7551.als 7552.als 7553.als 7554.als

7898.als 7899.als 7900.als 7901.als 7902.als

Figure 2. An Example Edit Path from the FMPals Dataset.

The key statistics of both datasets are summarized in Tab. 1.

Feature SMT-LIB (FMPsmt) Alloy (FMPals)
Scale and Scope
Total Specifications 18,133 8,219 models
Unique Edit Paths 2,415 747
User Engagement
Median Edit Path Length 6 edits 8 edits
Maximum Edit Path Length 321 edits 211 edits
Code Quality and Errors
Syntactically Unique Specs 9,150 (50.5%) 3,513 (42.7%)
Syntactically Correct (of Unique) 5,971 (65.3%) 1,880 (53.5%)
Edit Paths Containing Errors 59.1% 54.1%

Table 1. Comparative Statistics of the FMPsmt and FMPals Datasets.

Research Questions
How do specifications evolve over time?

What are the most common syntactic errors users make when writing specifications?

How quickly do users identify and fix errors in their specifications?

How do consecutive edits relate to each other?

Analysis and Key Findings
Finding 1: Novices struggle with language fundamentals, but in different places.

In SMT-LIB, errors are highly concentrated. The single most common mistake is referencing
an undeclared constant (>50% of errors), a fundamental scope issue.
In Alloy, errors are distributed across the entire model structure. Novices find writing facts
(31.6%) and predicates (25.7%) just as challenging as defining signatures (15.5%).

53.6%

10.5%

7.7%

6.5%

5.5%

5.3%

(a)

Unknown constant
Invalid const. decl.
Parsing func. decl.
Logic not supported
Invalid declaration

Model unavailable
Invalid sort
Unknown sort
Unexpected char
Invalid func. decl.

8.2%

11.0%

22.9%

10.7%

12.1%

7.4%

20.9%

(b)

assert
declare-const
declare-fun
get-value
define-fun

get-model
declare-datatype
check-sat
eval
quantifiers

15.5%

25.7%

31.6%

4.2%

4.0%

15.5%

3.6%

(c)

sig
pred

fact
assert

fun
run

check

Figure 3. Common Syntactic Errors (a) and Error-Prone Constructs in SMT-LIB (b) and Alloy (c).

Finding 2: The workflow is rapid and incremental, but edit sizes differ.

Users employ a “trial-and-error” approach. SMT-LIB edits tend to be larger rewrites (median
51 chars), while Alloy edits are smaller, more frequent tweaks (median 25 chars).
Recovery is fast. In both datasets, syntax errors are typically corrected in a single edit step,
indicating users quickly identify and fix simple mistakes.

FMPals

0

50

100

150

200

250

300

Di
st

an
ce

s

Q1: 5

Med: 25

Q3: 123

(a)
FMPsmt

0

100

200

300

400

500

600

700

800

Di
st

an
ce

s

Q1: 6

Med: 51

Q3: 315

(b)
FMPals

1

2

3

4

5

6

In
te

ra
ct

io
ns

Q1: 1
Med: 1

Q3: 3

(c)
FMPsmt

1

2

3

4

5

6

In
te

ra
ct

io
ns

Q1: 1
Med: 1

Q3: 3

(d)

Figure 4. Edit Distance Between Revisions (a, b) and Steps to Fix Errors (c, d).

Finding 3 (SMT-LIB): Edits represent a logical ”trial-and-error” process.

Semantic analysis shows that consecutive scripts are often logically related.
23.9% of edits are semantically equivalent, suggesting users re-run analyses.
Another 22% represents refinement, where users incrementally strengthen or weaken their
logic, confirming an iterative development process.

S1, S2

=
Consecutive: 6,332

Non-Consecutive: 877

S1 S2

Consecutive: 2,805

Non-Consecutive: 2,125

S2

S1

S1 S2
Consecutive: 1,149

Non-Consecutive: 908

S1

S2

S2 S1
Consecutive: 1,748

Non-Consecutive: 1,542

Figure 5. Semantic Relationship Between Consecutive and Non-Consecutive SMT-LIB Scripts.

Implications & Key Takeaways
Error-Prone: Writing specifications is error-prone for novices. Tools should provide better,
more targeted support for common mistakes.

Incremental Development: Edits are mostly small and incremental– suitable for interactive
feedback and live analysis.

Tool Support: IDEs should provide targeted, context-aware assistance. Providing real-time
scope & reference checking and better error messages.

Conclusion & Future Work

Our analyses reveal common challenges in formal specification engineering:
Specifications evolve incrementally with frequent small edits.
Syntax and typing errors dominate, yet are usually resolved within a few steps.

These findings highlight the importance of tool support, feedback, and teaching strategies
that account for the trial-and-error specification writing approach.

Future Work:

Identifying code smells in Alloy models and SMT-LIB scripts to study recurring bad practices.
Extending analyses to other specification languages (e.g., nuXmv, Spectra).
Leveraging robust semantic comparisons and automated feedback to better support users.

Scan Me

https://soaib.me NFDIxCS Summer School 2025, Freiberg soaibuzzaman@uni-weimar.de

https://soaib.me
mailto:soaibuzzaman@uni-weimar.de

