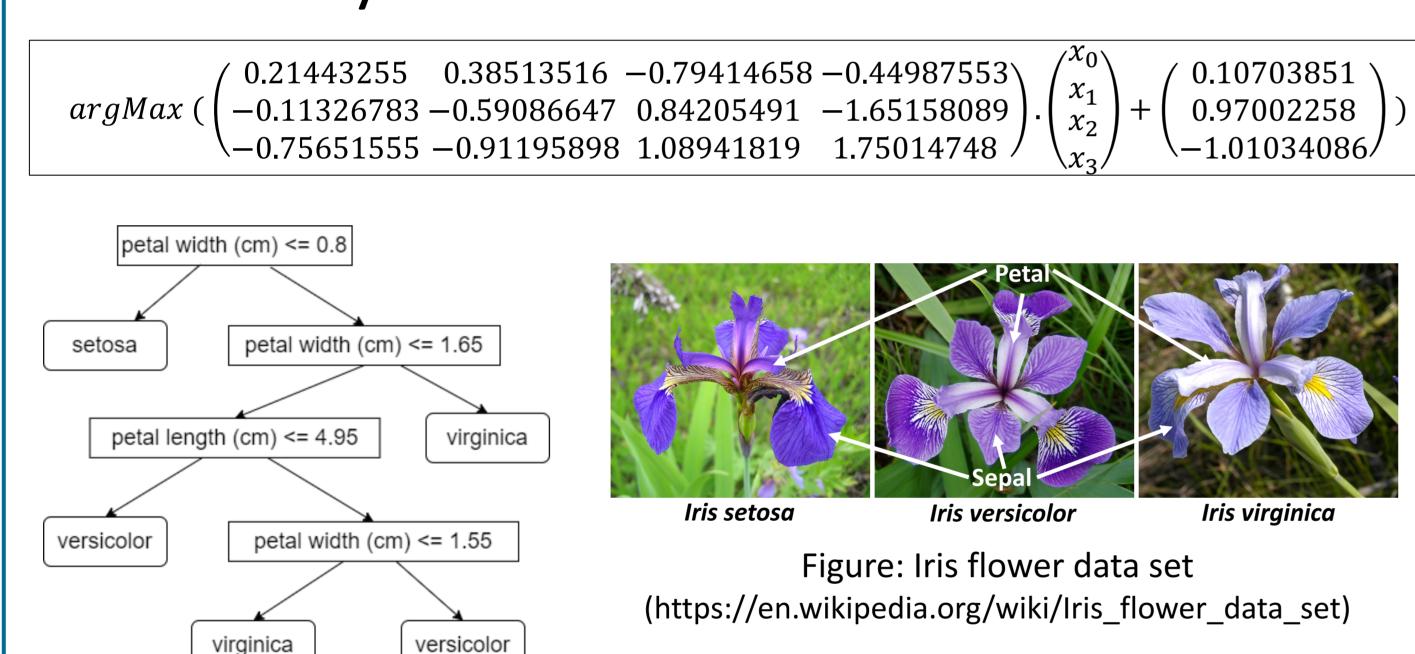
Towards Comparing Learned Classifiers

Bauhaus-Universität Weimar


by: Soaibuzzaman

Motivation

- Numerous complex, real-world applications rely on Machine Learning (ML) classifiers
- State-of-the-art formal analysis of ML models lacks systematic methods to compare multiple classifiers
- Understanding classifier variants during software design and evolution is crucial for improving model quality and trust

Example Classifier Comparison

- A Support Vector Machine (SVM) & Decision
 Tree (DT) are both trained on the Iris dataset
- Accuracy: SVM=96% and DT=96%

- Should we use the SVM or the DT?
- How are the two classifiers different?
- Is it relevant which one to use if they agree on known data (the train/test dataset)?

MLDiff Comparison Result Example

- DT classifies some instances as Virginica (medical use), while SVM classifies them as Versicolor (poisonous)
- No such example exists in the dataset
- This harmful, possible misclassification needs investigation with domain experts

MLDiff Implementation

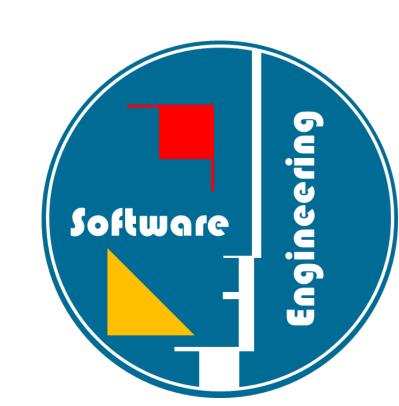
• For two classifiers cl_1 on features X_1 and cl_2 on features X_2 we **encode SMT assertions** for $\forall d \in \mathbb{R}^{|X_1 \cup X_2|} : cl_1 \oplus cl_2 (d) = cl_1(d|_{X_1}) \times cl_2(d|_{X_2})$

(declare-const x0 Real) ; one constant for each feature
; ...
(declare-const xn Real)
(declare-const cls1 Int) ; predicted class of first classifier
(declare-const cls2 Int) ; predicted class of second classifier
; assertion for classifier 1 relating x1..xn to cls1
; assertion for classifier 2 relating x1..xn to cls2
(assert (not (= cls1 cls2))) ; example query for disagreement

Use Cases and Queries

- Differences: $cl_1(d|_{X_1}) \neq cl_2(d|_{X_2})$
- Extension with **custom/domain constraints**: disagreements regarding small (weight x_6) mammals (categorical x_1) with 4 legs (x_3):

$$x_1 = 1 \land x_3 = 4 \land x_6 \le 0.2 \land cl_1(d|_{X_1}) \ne cl_2(d|_{X_2})$$


Currently Supported Classifiers

- Decision Trees
- Logistic Regression
- Multi Layer Perceptron (only ReLu, identity)
- Support Vector Machine (only linear kernels)

MLDiff supports classifiers on different input features and different classes by expressing queried relations in assertions

Challenges and Open Problems

- Supporting a larger set of functions in classifiers (SMT's arithmetic limitations)
- Scaling to complex models and queries (approximation and decomposition)
- Developing a domain-expert-friendly query language
- Generating relevant and interesting indomain examples
- Exploring examples and explanations (summarizing and explainable AI)

