On the Comparison of Learned Classifiers

[0000—-0002—8971=5904] " Jenny Déring, Srinivasulu Kasi, and

Jan Oliver Ringert[0000_0002_3610_3920]

Soaibuzzaman

Bauhaus-University Weimar, Germany

Abstract. Machine learning for classification has seen numerous ap-
plications to complex, real-world tasks. Learned classifiers have become
important artifacts of software systems that, like code, require careful
analyses, maintenance, and evolution. Existing work on the formal ver-
ification of learned classifiers has mainly focused on the properties of
individual classifiers, e.g., safety, fairness, or robustness, but not on an-
alyzing the commonalities and differences of multiple classifiers.

We present MLDIff, a novel approach to comparing learned classifiers
based on querying agreements and disagreements between classifications,
where one classifier is an alternative or variant of another. We present a
prototypical implementation that leverages an encoding to SMT and can
discover differences not (yet) seen in available datasets. Our prototype
implements MLDIff for any combination of Decision Trees, Linear Sup-
port Vector Classification, Logistic Regression Classification, and Neural
Networks. We evaluate it on classifiers trained on popular datasets in
terms of performance and effectiveness of the analysis to discover dis-
agreements between classifiers.

Keywords: machine learning, comparison, SMT

1 Introduction

Machine learning for classification has seen numerous applications to complex,
real-world tasks. Existing work on the formal verification of learned classifiers
has mainly focused on the verification of properties, e.g., safety [19120], fair-
ness [18/42I33I32] or robustness [S0JI0I2], of individual classifiers but not on the
commonalities and differences of multiple classifiers. Learned classifiers become
important artifacts of software systems that, like code, require careful analy-
ses, maintenance, and evolution. Typically, alternative or evolved classifiers are
compared by individual metrics on known datasets or on variants of the above
properties. While these are meaningful and important, they do not provide com-
parison in terms of disagreements or common classifications.

We present MLDIff, a novel approach to directly comparing learned classi-
fiers where one is an alternative or variant of another. The definifition of MLDiff
does not rely on existing datasets or benchmarks and thus covers differences
not (yet) seen in available data. It can also show the absence of differences.
Our motivation for developing MLDiff is to assist users in comprehending the

https://soaib.me/publications/2025-sefm//

2 Soaibuzzaman et al.

reasons behind the counter-intuitive properties [39] and disagreements between
classifiers. Typical use cases include checking disagreements of classifiers or un-
covering safety-critical differences, e.g., generating and browsing instances that
witness (mis-)classifications. We discuss example characteristics of MLDiff for
querying a combination of classifiers on common features and adding feature
constraints in Sect. [

We have implemented a prototype of MLDiff (based on SMT [24J21] encod-
ings, see Sect. [5]) for combinations of Decision Trees (DT), Linear Support Vector
Classification (SVM), Logistic Regression Classification, and Neural Networks.
We evaluate MLDIff and our prototype implementation on classifiers trained on
popular datasets in Sect. @ Our implementation is available from [38].

2 Example

Consider the well-known dataset of Iris flowers [14] for classifying flowers by their
petal and sepal length and width (four features) into three species. A team of
engineers has trained the SVM and the Decision Tree (DT) classifiers shown in
Fig. [1][top] and [left] for evaluation. A traditional comparison reveals an accuracy
of 96% for both classifiers and an Fl-score of 96% for the DT and 93% for the
SVM, making the DT the preferred choice.

However, an MLDiff analysis shows that the DT sometimes classifies in-
stances as Virginica species (used for medical purposes) when the SVM classifies
them as the poisonous Versicolor [12]. This disagreement (shown in Fig. [1|[right])
and potentially serious misclassification alarms the engineers. They consult a
horticulturist for clarification before deploying either classifier. Note that no
such instance is contained in the dataset, i.e., even an exhaustive search through
the dataset would not have revealed the potentially dangerous disagreement.

As another example, a team of engineers is working on a facial recognition
system for lab access. Maintaining the existing Neural Network (Multi-Layer Per-
ceptron) classifier has become costly as the number of target faces grows (classes:
employee IDs). Alternatively, the team investigates a binary Logistic Regression
(LogReg) classifier (classes: access/no access). The existing MLP classifier is
trained to classify employees with IDs 0 — 9, e.g., the face in Fig. [2] [left] has
ID/class aﬂ while the candidate LogReg classifier is trained on more employees
(IDs 0 — 15) where IDs 0 — 5 have access, e.g., the face shown in Fig. |2 [right],
and IDs 6 — 15 do not.

One question of the engineers is whether the new LogReg classifier would
give access to any employee with an ID other than 0-5 when checked against
the existing and trusted MLP classifier. MLDiff finds such a case as shown in
Fig. [2| [middle] and the team decides to stay with the more fine-grained MLP
classifier. Note that MLDiff does not prove any quality properties of the MLP
classifier, but rather uncovers potentially interesting differences of the classifiers.
Also note that the face in Fig. |2| [middle] does not exist in the dataset and is

! The MLP and LogReg classifiers are trained on the Olivetti Faces dataset [23]

On the Comparison of Learned Classifiers 3

8

—0.11326783 —0.59086647 0.84205491 —1.65158089 ! 0.97002258

0.21443255 0.38513516 —0.79414658 —0.44987553 o 0.10703851
argMaz(: +)
—0.75651555 —0.91195898 1.08941819 1.75014748 —1.01034086

8 8
V)

3

‘ petal width (cm) <= 1.65 ‘ Classifier Disagreement:
/ DT: Virginica

(medical use)

‘ petal length (cm) <= 4.95 ‘ N
W /\ SVM: Versicolor
\ Q (poisonous)
S 2cm

| petal width (om) <= 155 | petal
/ \ 2cm

[virginica } {versicolor J

sepal

Fig. 1. A learned SVM (Linear Support Vector Classifier) [top], a learned decision tree
[left] (both for the Iris dataset), and an analysis result computed by MLDIff predicted
as Virginica (medical use) by the DT and as Versicolor (poisonous) by the SVM.

generated by MLDIiff as a witness for an analyzed difference (details on the MLP
classifier and a PCA-based reduction are provided in Sect. .

3 Background

We present background on classifiers that assign classes to vectors of feature
values (instances). Our presentation applies some pragmatic simplifications, e.g.,
features are all Real-valued. Common encoding techniques [I6] can support other
feature domains, e.g., categorial or integer-valued.

We denote classes by ¢ € C, e.g., versicolor € C, features by x € X,
e.g., petal length € X, and valuations of features as instances d € D = RIXI,
For instance d € D we denote the value of feature x € X by d(z) € R. As an
example, the instance d from Fig. [1| [right] has d(petal length) = 3.7.

We consider classifiers as total functions that map instances to classes as
stated in Def. [l

Definition 1 (Classifier). A classifier over features X is a total function cl :
RIXI — C that maps each instance d € D = RIXI to a class ¢ € C.

Variants of this most basic definition may exist, e.g., classifiers as partial
functions or classifiers as relations, that could also be supported by MLDiff. It
is easy to check that the classifiers from Sect. [5] Defs. [}[7] map to Def.

4 Classifier Comparison

We now introduce the conceptual framework MLDiff and present one approach
for its implementation in Sect. The goal of MLDIff is to provide deeper in-

4 Soaibuzzaman et al.

r

\.4

=

The most similar real MLDiff Witness: The most similar real
face of ID 8 (no access) MLP: ID 8 (no access) face with access
LogReg: access

Fig. 2. A conflict of an MLP and a LogReg classifier detected by MLDIiff [middle| where
the LogReg classifier grants access when the MLP classifier would deny it based on the
determined employee ID 8. Closest representatives of the dataset from both classes are
shown [left] and [right] from the Olivetti Faces dataset [23] for illustration purposes

sight into the differences between classifiers. Def. [2 presents the MLDIff classifier
combination we use for analyses of differences of classifiers.

Definition 2 (MLDiff Classifier Combination). Given classifier cly : RIX1| —
C and classifier cly : RIX2l — Cy we construct the MLDiff classifier combination
cly @ cly : RIX19Xel s 0y x Oy such that

Vd € RIX1YXzl el @ ely(d) = ely (dx,) % cla(d]x,)

where d|x, projects RIX19X2l o RIXil with corresponding values for features X;.

Note that if the two classifiers are total functions as in Def. [[] then also their
MLDiff combination from Def. [2]is a total function. Cases where features X; =
X5 are very common when using classifiers on datasets of the same structure.
Cases where X1 N X3 = (), i.e., both classifiers have completely independent
input, are meaningful in cases where instances d; € RI*t! can be transformed
to instances in dy € RIX2|, e.g.. when classifying images with or without PCA
pre-transformation (variant of second example in Sect. , but would require
more complex queries.

Note that common features are shared between classifiers, while classes and
classifications are always kept separate. For the two classifiers in Fig. [T of the Iris
dataset we have X; = X5 and C; = Cy = {setosa,virginica, versicolor}.
For d as in Fig. [1| [right] we have cly @ clo(d) = (virginica,versicolor), i.e.,
applied to the same element d, the classifiers disagree. In the second example in
Sect. [2] we have X1 = X, but {0..9} = C; # C> = {access,no access}. For d
as in Fig. [2| [middle] we have cly @ clz(d) = (8, access).

On the Comparison of Learned Classifiers 5
4.1 Use Cases and Queries

We envision various and flexible use cases of MLDiff for the comparison of learned
ML models. We believe that generating individual counterexamples is useful in
safety- or interpretability-critical contexts where ML models require rapid evalu-
ation and iteration, e.g., in certification, debugging, or auditing scenarios. Anal-
yses may be customized using queries, i.e., assertions over feature variables and
predicted classes. Some common example queries are about classifier disagree-
ment encoded by the query ¢; # ¢y where (¢1,c¢2) = cly @ cla(d) (used in the
first example in Sect. [2| and Fig. [1)) or common classification results encoded by
the query ¢; = c2. An example for a custom query on classifier predictions is
¢1 = 1 Acz > 5 as used in the second example in Sect. 2] and Fig. 2] Queries
may also be extended with constraints on feature values (see Sect. . Given
a classifier combination and a query, MLDIiff generates a satisfying instance as
defined in Def. [3] Note that we do not fix the query language of MLDiff. Differ-
ent implementations may use different logics, e.g., our prototype in Sect. [b| uses
First-Order Logic queries (SMT).

Definition 3 (MLDIiff Result). Given a classifier combination (Def.[9) and
a query ¢ over d, c1, and ca, an MLDiff result is a valuation of d, c1, and co
that satisfies ¢ and (c1,c2) = cly @ cla(d).

4.2 Feature Constraints

Consider an analysis of the two Iris classifiers from Fig. [T for agreements. MLDiff
could produce a witness instance d with d(sepal length) = —3. While math-
ematically correct, one would likely consider this an undesired witness, as the
length cannot be negative. We have observed these and similar cases in manual
experiments with our prototypical implementation of MLDIiff (see Sect. .

To prevent these undesired witnesses, we extend MLDIff to take feature con-
straints into account. Some examples of feature constraints supported by our
prototypical implementation of MLDIff are upper and lower bounds, restrictions
of feature values to Int or Real values, and support for categorial features. All

these feature constraints easily translate to assertions on a single feature variable
in SMT.

5 MLD:Iff prototype

We present a prototypical implementation of MLDIff (available from [38]). The
implementation is designed for transparency and for supporting most features of
MLDIiff as presented in Sect.[d] Many alternative implementations with different
properties in terms of performance or completeness are possible.

(SISO R

6 Soaibuzzaman et al.

(declare-const x0 Real) ; one constant for each feature
B 0

(declare-const xn Real)

(declare-const clsl Int) ; predicted class ID of first classifier
(declare-const cls2 Int) ; predicted class ID of second classifier

; assertion for classifier 1 relating x1..xn to clsl

; assertion for classifier 2 relating x1..xn to cls2

(assert (mot (= clsl cls2))) ; example query for disagreement of classifiers

Listing 1. Generic encoding of the MLDIiff classifier combination from Def. [2] into an
SMT module with an example query for classifier disagreements in line 8

5.1 Realizing Classifier Comparisons

Our implementation of MLDiff is based on a translation of the classifiers to SMT
formulas. A sketch of a generic SMT problem representing the classifier combi-
nation from Def. 2] is shown in Lst. [l Shared Real-valued feature variables are
declared and used in both classifier translations (Lst. [1} 1. 1-3). The indepen-
dently determined classification results cls1 of the first classifier and cls2 of
the second are encoded as Int variables (Lst. |1} 11. 4-5) and used to query for
particular combinations, e.g., disagreement (Lst. [I} 11. 8). Generated assertions
(Lst.[1} 1. 6 and 1. 7) determine classification results by feature variable valuations
in translations specific to each classifier kind as described in Sect. [5.2}

5.2 Translation to SMT

Our notation of the translation combines the structure of each classifier as found
similarly in many textbooks [3I16] and pseudo code of generated SMT formu-
las. We indicate operators and values in SMT formulas by double-underlining
them in the algorithms. And(...) represents a conjunction over arguments, 0r (
...) a disjuntion, and Ite(b, vi, v2) the if-then-else operator. The following
Algs. can be read as templates where executing control structures, e.g., for-
loops, generates SMT API calls to instantiate SMT formulas. For generality, the
algorithms use class variable cls for either cls1 or c1s2 in Lst. [I]

Decision Tree Classifier Intuitively, our translation of decision tree classifiers
as defined in Def. i to SMT, shown in Alg. [1] lists for each class ¢ € C (1. 1) all
conditions of each path from the root to a leaf of ¢ (1l. 2-6) and states that the
satisfaction of the conditions determines the classification (1. 8). Applied to the
example DT from Fig. [I] Alg. [1] generates the SMT API calls shown in Lst.
Note that class setosa has a single path (Lst. [2 1. 2) and that class virginica
has a longest path in the DT (Lst. [} 1. 5) with four decisions.

Definition 4 (Decision Tree). A decision tree T for features X and classes C
s a finite tree with a distinguished root node. Non-leaf nodes t € T are assigned
D(t) € D = RXI and a partition of D(t) to children of t. Leaf nodes of T are
assigned a class from C. D(r) = D iff r € T is the root node.

On the Comparison of Learned Classifiers 7

Algorithm 1 Translation of a DT from Def. [l] to SMT

1: procedure ENCODEDT(decision tree T' for classes C and features X)
2: And(for c € C' do > conjunction over all classes, selecting all paths in T

3: Or (for path 7. € T starting in the root and ending in a leaf with class ¢ do
4: And(for consecutive nodes (¢,t') € m. do > conjunction over path elements
5: z(t) <= v(¢) if ¢’ left child of ¢

6: z(t) > v(¢) if ¢ right child of ¢

T end for) > conjunction of path elements
8: end for) == (cls == ¢ > disjunction over all paths determins class
9: end for) > conjunction over all classes

1 And(% listing classes with all their paths through the DT

2 Or (And (x3 <= 0.8)) == (cls == 0), 7/ setosa (only one path of length one)
3 Or (And(x3 > 0.8, x3 <= 1.65, x2 > 4.95, x3 > 1.55),
4 And(x3 > 0.8, x3 <= 1.65, x2 <= 4.95)) == (cls == 1), % versicolor
Or (And(x3 > 0.8, x3 <= 1.65, x2 > 4.95, x3 <= 1.55),
6 And(x3 > 0.8, x3 > 1.65)) == (cls == 2)) J virginica

Listing 2. Translation of the DT classifier from Fig. [T] into SMT API calls

Linear Support Vector Classifier A Linear Support Vector Machine (SVM)
separates instances for classification by hyperplanes. Its elements are shown in
Def. [}l Our translation of SVMs closely follows their structure provided in Def. [5]
as shown in Alg. 2] where the dot product of the feature vector and the coefficient
matrix W is calculated. The bias vector b is added in line 6 for each class. The
dot product only uses linear arithmetic and generates one sum for each class as
parameter for the argMax encoding procedure shown in Alg. (3| (called in Alg.
1. 2). Applied to the example SVM from Fig. [1] Alg. [2 generates SMT API calls
shown in Lst. [3| (coefficients rounded to 5 decimals).

The encoding of argMax iterates over all classes (Alg.|3] 1. 2) and exhaus-
tively determines the classification result cls. Note the inner nested loop and
different comparison operators in 1. 4 and 1. 5 to ensure that in case of multiple
classes with the same scores, the one with the lowest index is determined (see
also the validation in Sect. . Applied to the example SVM from Fig. (1| Alg.
generates the SMT API calls shown in Lst. {4 where the scores s0-s2 (parame-
ters of Alg. |3|) correspond to those generated in Lst. |3| by Alg. |2 e.g., score s0
corresponds to the expression in Lst. 3| 1. 2.

Definition 5 (Linear Support Vector Classifier). A Linear Support Vector
Classifier for features X and classes C consists of a coefficient matric W €
RICXIXT and bias vector b € RIC! describing |C| hyperplanes.

Many implementations, e.g., scikit-learn [28], simplify the representation for
binary classifiers. The coefficient matrix W e RICI*IX| is replaced by a simple
vector w € RIXI and argMaz is simply a comparison for a positive value. Our
implementation (not shown in Alg. [3]) also handles this special case by encoding
this comparison with an if-then-else operator.

8 Soaibuzzaman et al.

Algorithm 2 Translation of a SVM from Def. [to SMT

1: procedure ENCODESVM(coeffs. w(c,) for classes C' and features X)

2: ENCODEARGMAX (> call to encode argMazx of values for each class
3: for c € C do > calculate dot product by coefficient vectors for each class
4: Sum(for feature # € X and corresponding coefficient w(c, z) of W do

5: z * wic,x)

6: end for) + b(c) > close parenthesis for sum and add bias
7 end for) > end of argMaz parameters (sums)

I encodeArgMax (J partial code generated for parameters

2 Sum(x0 * 0.21443, x1 * 0.38514, x2 * -0.79415, x3 * -0.44988) + 0.10704,
Sum(x0 * -0.11327, x1 * -0.59087, x2 * 0.84205, x3 * -1.65158) + 0.97002,

1 Sum(x0 * -0.75652, x1 * -0.91196, x2 * 1.08942, x3 * 1.75015) + -1.01034)

Listing 3. Excerpt of translation of the SVM classifier from Fig. [[]into SMT API calls
(showing code generated from Alg. |2} 1l. 3-6) used as parameters for Alg.

Algorithm 3 Helper function argMaz in SMT
1: procedure ENCODEARGMAX(scores s for classes C')

2: And(for c € C do > class with highest score
3 (cls == ¢) == And(for ¢ € C,c # c do > score greater or equal
4: s(c) > s(c) if index of ¢’ lower than index of ¢
5: s(e) >= s(c) if index of ¢’ higher than index of ¢
6 end for) > end conjunction of scores greater than others
7 end for) > end conjunction over all classes
1 And((cls = 0) == And(sO >= sl1, s0 >= s2),) setosa
2 (cls = 1) == And(s1 > s0, sl >= s2), % versicolor
(cls = 2) == And(s2 > s0, s2 > sl1)) % virginica

Listing 4. Excerpt of code generated from Alg. [3] for the SVM classifier from Fig.
into SMT API calls (scores s0-s2 are expressions shown in Lst.

On the Comparison of Learned Classifiers 9

Logistic Regression Classification Note the structural correspondence be-
tween SVMs (Def. and Logistic Regression Classifiers in Def. @ The class

index of an instance d € RXI is argM ax(m), where the logistic func-

tion H% is applied to each component of the product W -d+ b. As the logistic
function is monotonic, omitting it before applying argMaz in Alg. [3has no effect
on the determined class. The SMT translation of Logistic Regression classifiers

from Def. [f]is thus identical to Alg. 2|

Definition 6 (Logistic Regression Classifier). A Logistic Regression Clas-
sifier for features X and classes C consists of a coefficient matriz W € RICI*IX]
and bias vector b € RIC! describing |C| hyperplanes.

Multi Layer Perceptron The most complex model translated by our proto-
type is the Multilayer Perceptron (MLP), a feedforward artificial neural network
with connected neurons in at least three layers (input-, hidden-, and output-
layer) with elements shown in Def. [7l The class index of an instance d € RIX|
is then determined by argMax(ar(Wy - (... ag(Wo - d + bg)) + b)). A common
activation function for hidden layers is the rectified linear unit (ReLU) function
relu(z) = max(0,x). Our translation shown in Alg. |4| computes the activation
scores of each neuron j in each layer ¢ (1l. 4-8). The procedure APPLY ACTIVATION
(Alg.[4] 1. 9) is not further detailed here, it encodes activation functions, e.g., the
ReLU function on score s as Ite(s >= 0, s, 0). The assignment to activation
in Alg.[4 1. 9 and the outer loop nest calculations to propagate activation values
of the output layer for use in Alg. [4] 1. 11.

Definition 7 (Multi-Layer Perceptron). A Multi-Layer Perceptron Classi-
fier for features X, classes C, and hidden layer sizes h; € N of layeri = 1..k con-
sists of input layer weights Wy € RIXI*M - hidden layer weights W; € Rhi*hit1
for i < k, output layer weights Wy, € R"*ICl " corresponding biases bi—g. 1, and
activation functions a;—g. for each layer type.

Algorithm 4 Translation of an MLP from Def. [7] to SMT
1: procedure ENCODEMLP(MLP layers for classes C' and features X,)

2: activation < X > start with feature values/variables
3 for layer i in 0..k do > calculate activation layer by layer
4 scores < for neuron j in 0..h;11 (i = k: 0..|C|) do > neurons in layer i + 1
5 Sum(for a € activation and corresponding coefficient w;(j,a) of W; do

6: a * wi(j,a

T end for) + b;(J > add bias of neuron input weights to sum
8: end for > end of calculation of scores
9 activation <— APPLY ACTIVATION(Scores) > input, hidden, or output activ.
10: end for > propagated all activations to last output layer
11: ENCODEARGMAX(activation) > see Alg. [

10 Soaibuzzaman et al.

5.3 Limitations of the Prototype

Our current prototype is based on the Z3 SMT-solver [24/43] and as such shares
limitations related to more complex arithmetic functions, e.g., it currently does
not support non-linear kernels for SVMs nor activation functions for the hidden
layers of the MLP other than ReLU and identity.

6 Evaluation

We evaluate our prototypical implementation of MLDiff on combinations of
datasets and all classifier kinds from Sect. trained as described in Sect.
Our research questions investigate effectiveness as numbers of disagreements
founds and the efficiency of the implementation and its extensions:

— RQ1: How many disagreements does our MLDiff comparison find?
— RQ2: What is the analysis cost for different classifiers?
— RQ3: What is the overhead of adding feature constraints?

All experiments were conducted on a standard desktop computer with an
Intel i7-7700K@4.2GHz CPU and 32 GB DDR4 2667 MHz RAM. We used the
Z3 SMT-solver [24/43] Python API to run all analyses with a 1-hour timeout.

6.1 Datasets, Training, and Classifiers

We base our evaluation on four datasets with different characteristics sourced
from scikit-learn [28]: Iris dataset [14], Digits dataset [I], Breast Cancer dataset [45],
and Olivetti Faces dataset [23]. The Iris dataset [I4] comprises 150 samples of iris
flowers, each characterized by four real-valued, positive features: sepal length,
sepal width, petal length, and petal width. The Digits dataset [I] includes 1,797
8x8 pixel images depicting handwritten digits, with features represented by in-
tegers ranging from 0 to 16. The total samples are distributed among 10 classes
with around 180 samples per class. The Breast Cancer dataset [45] provides di-
agnostic features computed from digitized images of breast cancer biopsies, with
30 real-valued features for each of the 569 samples, serving as a benchmark for
binary classification of tumors as malignant or benign. Lastly, the Olivetti Faces
dataset [23] encompasses 400 64x64 pixel grayscale images (features/pixels range
from 0 to 1) of faces, capturing 40 different individuals (used in Sect. .

We trained Decision Tree (DT), linear Support Vector Machine (SVM), Lo-
gistic Regression, and Multi-Layer Perceptron (MLP) classifiers using the scikit-
learn [28] library in Python. The DT, SVM, Logistic Regression, and MLP were
trained with default parameters. The MLP was executed with a maximum of 100
iterations. A single hidden layer configuration with 10 neurons was allocated for
the Digits and Breast Cancer datasets, while a single layer comprising 20 neurons
was used for the Iris and Olivetti Faces datasets.

We partitioned each dataset into training and testing subsets using the con-
ventional 80-20 ratio to evaluate the models. Due to the high numbers of features

On the Comparison of Learned Classifiers 11

Accuracy (%) F1-score (%)
i d o c i d o c
DT | 100.00 | 86.94 | 65.00 | 94.74 1 0.97 1 0.93 | 0.99
SVM | 100.00 | 96.39 | 100.00 | 93.86 | 0.98 | 0.99 1 0.92
LOGREG | 100.00 | 96.94 | 100.00 | 95.61 | 0.98 | 0.99 1 0.95
MLP | 83.33 | 92.22 | 75.00 | 96.49 | 0.88 | 0.95 | 0.74 | 0.92
Table 1. Accuracy and Fl-score of classifiers on datasets (in columns): Iris (i), Digits
(d), Olivetti Faces (o), and Breast Cancer (c)

and classes of the Olivetti Faces dataset, our evaluation used 10 classes (0..9)
and employed Principal Component Analysis (PCA) to reduce input dimension-
ality to 24 components. The accuracy and F1l-score metrics across all classifiers
and datasets are presented in Table [I} showing that most classifiers performed
well with accuracy rates exceeding 90% and F1-scores approximating unity. As
an exception, the Decision Tree classifier applied to the Olivetti Faces dataset
exhibited relatively diminished accuracy levels.

6.2 Validation

All implementations may have bugs and we decided to validate our work against
different checks of correctness and completeness.

First, we have validated the correctness of the SMT translation of classifiers
by encoding each instance of the dataset into SMT (one at a time) and extracting
the predicted class from the SMT model for comparison against the prediction
of the original classifier.

Note that after the encoding of the classifier and an instance, a model should
always exist as the classifier is a total function. Our initial validation encoded
the predicted class and checked for satisfiability, but this check is weaker as it
would even be satisfied by a module with no assertions. We also experimented
with a simpler encoding of argMaz, stating that the determined class is that
of the maximum score. However, this simpler encoding leads to the SMT solver
picking a class if scores are tied (although correct, it fails validation against the
scikit-learn [28] variant that picks the lowest class indices as our Alg. [3)).

Second, in addition to encoding instances in SMT we tested the extraction of
instances, i.e., the analysis results/witnesses. We exhaustively asked the solver to
produce all disagreements for unique class combinations of either classifier. Each
disagreement was extracted and given to the original scikit-learn [28] classifiers
for confirmation in Python.

This second validation discovered interesting behavior of the SMT solver. The
solver computed spurious instances for some combinations of classifiers involving
SVM, Logistic Regression and MLP Classifiers. Our translation uses Real-valued
variables with unlimited precision in Z3 [24]43]. The scikit-learn implementation
in Python uses float64 numbers. The SMT solver often computes models close
to the decision boundaries that fail to be reproduced in Python due to rounding
errors. We call these instances spurious instances although the analysis in SMT

12 Soaibuzzaman et al.

is correct. We have analyzed various spurious instances manually, e.g., a feature
value conversion from Real to float64 introduced a 107!¢ rounding error that
after matrix multiplication in an SVM classifier was significant enough to change
the argMax result. Issues with accuracy of analyses and rounding have been
observed by others in literature [22J25]. We leave further investigation of this
issue to future work.

6.3 Results

To answer RQ1 for different combinations of classifiers, we combined all pairs
of classifiers across all four datasets to exhaustively compute disagreements per
classification outcomes. We calculated the ratio of found disagreements to pos-
sible disagreements, where possible disagreements are equal to the number of
classes squared minus the number of classes (where both agree).

Interestingly, MLDiff was able to find disagreements between all clas-
sifiers for all combinations of classes, i.e., for any combination we could
compute an instance that forces the disagreement. We compared this surpris-
ingly high number with disagreements one could find by using only the existing
datasets: For half of the datasets 26% (median disagreement ratio of 0.26) or
more disagreements can be found only relying on existing elements. However,
when excluding the breast cancer dataset, which is a binary classification (and
thus has only 2 possible disagreements), the distribution of disagreements is 0.17
for the median, and 0.39 for the third quartile (Q3).

To address RQ2 we investigate the analysis cost of finding disagreements
using MLDIff across all pairs of classifiers (16 pairs) and datasets (64 combi-
nations). Table [2| shows times in seconds for computing all differences (number
depends on dataset, but not on classifiers as established in answer to RQ1) be-
tween pairs of classifiers on all four datasets: Iris (i), Digits (d), Olivetti Faces
(0), and Breast Cancer (c). For Decision Tree (DT), Linear Support Vector Clas-
sifier (SVM), and Logistic Regression (LOGREG) classifiers, the analysis cost
was quite low, ranging from 0.01 to 24.31 seconds. However, the analysis cost
was significantly higher (up to 1382.27 seconds) for the Multilayer Perceptron
(MLP), particularly for datasets with high dimensionality and many classes,
such as Digits and Olivetti Faces. Conversely, datasets with lower dimensions
and fewer classes, like Iris and Breast Cancer, remain fast for these classifiers.

Note that the order of the assertions encoded into the Z3 solver [24/43] has
a significant impact on the analysis cost. For instance, the cost of identifying
differences between the MLP and SVM on the digits dataset was 242.46 seconds.
However, the cost of identifying differences between the SVM and MLP on the
same dataset was 1382.27 seconds. Technically, these are identical problems. We
confirmed these surprisingly different times by repeating both measurements ten
times, with a standard deviation of 2.13 and 8.75, respectively. We believe that
this difference is due to internal SMT solver heuristics and instabilities [5] that
are known to be sensitive to the problem encoding.

To answer RQ3 about the overhead of adding feature constraints — as de-
scribed in Sect. [f2] - we repeated the experiments for all previous combinations

On the Comparison of Learned Classifiers 13

DT SVM LOGREG MLP
i d o c i d o c i d o c i d o c
DT|0.01]| 0.01 | 0.01 |0.00{0.02| 1.80 1.02]0.03|0.02| 2.75 | 1.32 |0.03|6.03| 247.90 {171.97|0.69
SVM|0.02| 2.31 | 1.00 |0.02|0.01| 0.06 0.02 |0.01|0.02]10.89 | 5.32 [0.03|8.19/1382.27|833.39(0.65

LOGREG]|0.02| 2.74 | 0.98 |0.02|0.02| 24.31 | 7.89]0.03|0.00| 0.06 | 0.02 |0.01|7.20| 1133.86 |838.69|0.56
MLP|7.06|97.54|242.46|0.32|8.03|254.06|1009.80|0.44|8.49(324.44|1180.57|0.58/0.01| 0.03 0.02]0.01

Table 2. RQ2 analysis time (in seconds) of finding all differences of pairs of classifiers
on datasets: Iris (i), Digits (d), Olivetti Faces (o), and Breast Cancer (c)

DT SVM LOGREG MLP
i d o c i d o c i d o c i d| o c
DT|0.91] 1.31 | 3.19 | 1.08 |1.04|TO |323.72{1.00/0.96| TO |206.67|1.00{1.23| TO | TO |7.09
SVM|0.93|1441.79|188.65| 0.96 [0.87|1.08| 2.75 |1.02|1.02| TO| TO |1.02(1.54| TO|TO |2.40
LOGREG|1.02| TO |495.57/0.99 |1.13|TO| TO |1.04/1.07|1.10| 4.52 |1.03|1.05|TO|TO |6.32
MLP|1.46] TO TO [16.03|2.16 | TO| TO [2.72|1.08) TO| TO |3.18]0.97|1.18(3.02|1.04

Table 3. RQ3 Overhead of adding feature constraints computed as factors for times
from Table [2l TO indicates a timeout after 1h

used in RQ2. Feature constraints are specific to each dataset. We set the feature
boundaries to be between 0 and 1 for the Olivetti Faces dataset while assuming
that the features for the Iris and Breast Cancer datasets were exclusively pos-
itive values. Finally, we restricted the features in the Digits dataset to integer
values within the range of 0 to 16.

The outcomes of our experiment are presented in Table[3]as factors of the cor-
responding times shown in Table [2l The computation timed out mainly on com-
plex models such as MLP and datasets with higher dimensionality and features
(no analyses timed out for classifiers of the Iris and Breast Cancer datasets). It is
easy to see that adding constraints with more features makes the SMT problem
computationally expensive. On the other hand, datasets with fewer features can
be handled relatively quickly. Interestingly, there are a few instances where im-
posing feature constraints reduces the computation time instead of increasing it.
In some cases, the computation time remains unaffected despite the imposition
of feature constraints.

7 Related Work

Analyses of Classifiers Various works analyze individual machine learning
models. Techniques, such as SMT solving [1920J719I32], approximation/abstract
interpretation [34UT5I22ITT], and MILP [40/29/44], are utilized to verify neural
networks. MILP reduces the verification problem into a mixed integer linear
program. Solving the MILP enables the assessment of safety by identifying lower
bounds on global robustness through the use of adversarial examples [I3/4l8] or
counterexample-guided abstraction refinement (CEGAR) [6] to find property
violations.

An approach based on the MILP solver is presented in [] to establish bounds
for feed-forward neural networks with ReLLU activations. Local search allows it

14 Soaibuzzaman et al.

to identify better input solutions within updated target bounds until no solution
exists. In contrast, [I3] maximizes hidden neuron activation to create adversar-
ial examples, using the MILP solver to achieve precise results by minimizing
and maximizing neuron values layer by layer. Tjeng et al. [40] also proposed a
MILP-based method to find the nearest adversarial example based on a given
distance metric, using a progressive bound tightening procedure that quickly
obtains initial coarse bounds. If these bounds are inadequate, they use a linear
programming solver to find tighter lower and upper bounds, similar to [13].

Approximation and abstract interpretation-based methods are generally in-
complete [4I]. The AI® framework [I5] was the first to use abstract interpre-
tation, where their method over-approximated neural network computations by
interpreting them in an abstract domain. Singh et al. later developed different
abstract domains [35I36/37I34] and created an abstract domain library called
ERANH Prabhakar and Afzal [29] proposed an abstraction for feed-forward
neural networks with ReLU activations, carefully replacing the neural network
weights with intervals to account for the merging. While these methods primarily
focus on feed-forward neural networks, Zhang et al. [44] proposed another ap-
proach for recurrent neural networks. Other classical machine learning models,
such as Support Vector Machines [30] and Decision Trees [I0], have also been
formally analyzed for their robustness against adversarial perturbations.

All of the above works differ from MLDIff as they analyze single models.
However, their use of high-level reasoning tools and techniques to handle complex
analyses by abstraction and approximation techniques could likely similarly be
applied to MLDiff addressing performance issues like timeouts as observed in
RQ3 of Sect. [6.3}

Recent works such as NeuroDiff [27], ReluDiff [26] aim to prove that two
similar neural networks behave equivalently or within bounded differences for
all inputs, enhancing verification with symbolic approximations and gradient re-
finements. However, these methods are limited to closely related networks and
do not extend to diverse classifiers. MLDiff, instead, addresses the broader chal-
lenge of analyzing classifiers to find commonalities and disagreements, regardless
of architecture, training, or data.

ML Analysis using SMT The use of SMT-based analyses presents a straight-
forward approach to verification by transforming an analysis problem into a con-
straint satisfaction one. This methodology is extensively employed to validate
machine learning models [4I]. Frameworks such as Reluplex [19] and its successor
Marabou [20] utilize SMT-based techniques to verify safety properties of neural
networks. Marabou uses a divide-and-conquer approach for parallel execution
and maintains symbolic bounds for neurons as linear combinations of inputs.
Planet [9] employs an approximation technique to reduce the search space for an
SMT solver. This technique leverages interval arithmetic to estimate the bounds
for each neuron, encodes the neural network’s behavior as linear constraints,
and conjoins it with a safety property for verification. A practical and effective

2 ERAN:https://github.com /eth-sri/eran

https://github.com/eth-sri/eran

On the Comparison of Learned Classifiers 15

bounded model checking-based approach is presented in [31] to verify a controller
(Cart Pole System) with a multilayer perceptron. Huang et al. [I7] propose a
systematic method to prove local robustness in neural networks against adver-
sarial attacks. The approach checks a finite set of points that lead to the same
output and propagates constraints between neural network layers. Again, while
the works listed above differ from MLDiff in the properties and models analyzed,
their advanced encoding and use of specialized SMT solver features may be very
beneficial for our algorithms presented in Sect. [5.2]

Sharma and Wehrheim [33] proposed verification-based testing to check the
fairness of decision trees. They encode two data instances into SMT (rather
than two classifiers, as we do for MLDiff) to derive fairness tests. Sharma
et al. [32] propose MLCHECK, property-driven machine learning model test-
ing with a property specification language and systematic test case generation.
MLCHECK encodes decision trees and neural networks as SMT formulas, checks
for satisfiability, and uses the counterexample as a test input. In another work,
Vehicle [7], a compiler for compiling verifiers and theorem provers into a high-
level specification for neural networks. Property specification languages such as
MLCHECK [32] and Vehicle [7] could be useful extensions of MLDIff to support
the formulation of advanced analysis queries.

8 Conclusion

We have presented MLDIff, a novel approach to the comparison of learned classi-
fiers. We have motivated and illustrated the use of MLDiff on real-world datasets
and examples. We provide a prototypical implementation that supports Decision
Tree, Support Vector Machine, Logistic Regression, and Neural Networks classi-
fiers. An evaluation of MLDIiff using the Z3 SMT-solver [24] on popular datasets
and classifier combinations shows promising results in terms of effectiveness and
performance. Performance of the prototype degrades for more complex models
and queries, e.g., when including feature constraints. We leave exploring diverse
approaches for realizing efficient MLDiff implementations as future work.

Data Availability

We have made the MLDiff framework and a prototypical implementation avail-
able on GitHub as [3§].

References

1. Alpaydin, E., Kaynak, C.: Optical recognition of handwritten digits (Jun 1998).
https://doi.org/10.24432/C50P49, accessed on 2025-08-22.

2. Bastani, O., Ioannou, Y., Lampropoulos, L., Vytiniotis, D., Nori, A.V., Criminisi,
A.: Measuring neural net robustness with constraints. In: NIPS 2016. pp. 2613—
2621 (2016)

https://doi.org/10.24432/C50P49
https://doi.org/10.24432/C50P49

16

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Soaibuzzaman et al.

Bishop, C.M.: Pattern recognition and machine learning, 5th Edition. Information
science and statistics, Springer (2007), https://www.worldcat.org/oclc/71008143
Bunel, R., Turkaslan, I., Torr, P.H.S., Kohli, P., Mudigonda, P.K.: A unified view
of piecewise linear neural network verification. In: NeurIPS 2018. pp. 4795-4804
(2018)

Cebeci, C., Bjgrner, N., Candea, G., Pit-Claudel, C.: A conjecture regarding smt
instability. In: SMT 2025. CEUR Workshop Proceedings, vol. 4008, pp. 136-147.
CEUR-WS.org (2025)

. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided

abstraction refinement. In: CAV 2000. LNCS, vol. 1855, pp. 154-169. Springer
(2000). https://doi.org/10.1007/10722167 15

Daggitt, M.L., Kokke, W., Atkey, R., Arnaboldi, L., Komendantskaya, E.: Vehi-
cle: Interfacing neural network verifiers with interactive theorem provers. CoRR
abs/2202.05207 (2022), https://arxiv.org/abs,/2202.05207

Dutta, S., Jha, S., Sankaranarayanan, S., Tiwari, A.: Output range analysis for
deep feedforward neural networks. In: NFM 2018. LNCS, vol. 10811, pp. 121-138.
Springer (2018). https://doi.org/10.1007,/978-3-319-77935-5 9

. Ehlers, R.: Formal verification of piece-wise linear feed-forward neural networks.

In: ATVA 2017. LNCS, vol. 10482, pp. 269-286. Springer (2017). https://doi.org/
10.1007/978-3-319-68167-2 19

Einziger, G., Goldstein, M., Sa’ar, Y., Segall, I.: Verifying robustness of gradient
boosted models. In: TAAT 2019. pp. 2446-2453. AAAI Press (2019). |https://doi.
org/10.1609/AAAI.V33101.33012446

Elboher, Y.Y., Gottschlich, J., Katz, G.: An abstraction-based framework for neu-
ral network verification. In: CAV 2020. LNCS, vol. 12224, pp. 43-65. Springer
(2020). https://doi.org/10.1007/978-3-030-53288-8 3

Elias, T.S., Dykeman, P.A.: Edible wild plants: a North American field guide.
Sterling Publishing Company, Inc. (1990)

Fischetti, M., Jo, J.: Deep neural networks and mixed integer linear optimization.
Constraints 23(3), 296-309 (2018). https://doi.org/10.1007/S10601-018-9285-6
Fisher, R.A.: Iris (Jun 1988). |https://doi.org/10.24432/C56C76, accessed on 2025-
08-22.

Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vechev,
M.T.: AI2: safety and robustness certification of neural networks with abstract
interpretation. In: SP 2018. pp. 3-18. IEEE Computer Society (2018). https://doi.
org/10.1109/SP.2018.00058

Hastie, T., Tibshirani, R., Friedman, J.H.: The Elements of Statistical Learning:
Data Mining, Inference, and Prediction, 2nd Edition. Springer Series in Statistics,
Springer (2009). https://doi.org/10.1007,/978-0-387-84858-7

Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural
networks. In: CAV 2017. LNCS, vol. 10426, pp. 3-29. Springer (2017). https://doi.
org/10.1007,/978-3-319-63387-9 1

Ignatiev, A., Cooper, M.C., Siala, M., Hebrard, E., Marques-Silva, J.: Towards
formal fairness in machine learning. In: CP 2020. LNCS, vol. 12333, pp. 846-867.
Springer (2020). https://doi.org/10.1007,/978-3-030-58475-7 49

Katz, G., Barrett, C.W., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: An
efficient SMT solver for verifying deep neural networks. In: CAV 2017. LNCS, vol.
10426, pp. 97-117. Springer (2017). https://doi.org/10.1007/978-3-319-63387-9 5
Katz, G., Huang, D.A., Ibeling, D., Julian, K., Lazarus, C., Lim, R., Shah, P.,
Thakoor, S., Wu, H., Zeljic, A., Dill, D.L., Kochenderfer, M.J., Barrett, C.W.: The

https://www.worldcat.org/oclc/71008143
https://doi.org/10.1007/10722167_15
https://doi.org/10.1007/10722167_15
https://arxiv.org/abs/2202.05207
https://doi.org/10.1007/978-3-319-77935-5_9
https://doi.org/10.1007/978-3-319-77935-5_9
https://doi.org/10.1007/978-3-319-68167-2_19
https://doi.org/10.1007/978-3-319-68167-2_19
https://doi.org/10.1007/978-3-319-68167-2_19
https://doi.org/10.1007/978-3-319-68167-2_19
https://doi.org/10.1609/AAAI.V33I01.33012446
https://doi.org/10.1609/AAAI.V33I01.33012446
https://doi.org/10.1609/AAAI.V33I01.33012446
https://doi.org/10.1609/AAAI.V33I01.33012446
https://doi.org/10.1007/978-3-030-53288-8_3
https://doi.org/10.1007/978-3-030-53288-8_3
https://doi.org/10.1007/S10601-018-9285-6
https://doi.org/10.1007/S10601-018-9285-6
https://doi.org/10.24432/C56C76
https://doi.org/10.24432/C56C76
https://doi.org/10.1109/SP.2018.00058
https://doi.org/10.1109/SP.2018.00058
https://doi.org/10.1109/SP.2018.00058
https://doi.org/10.1109/SP.2018.00058
https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.1007/978-3-319-63387-9_1
https://doi.org/10.1007/978-3-319-63387-9_1
https://doi.org/10.1007/978-3-319-63387-9_1
https://doi.org/10.1007/978-3-319-63387-9_1
https://doi.org/10.1007/978-3-030-58475-7_49
https://doi.org/10.1007/978-3-030-58475-7_49
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

On the Comparison of Learned Classifiers 17

marabou framework for verification and analysis of deep neural networks. In: CAV
2019. LNCS, vol. 11561, pp. 443-452. Springer (2019). https://doi.org/10.1007/
978-3-030-25040-4 26

Konnov, I.: Edmund m. clarke, thomas a. henzinger, helmut veith, and roder-
ick bloem (eds): Handbook of model checking - springer international publishing
ag, cham, switzerland, 2018. FAC 31(4), 455-456 (2019). jhttps://doi.org/10.1007/
S00165-019-00486-7Z

Li, J., Liu, J., Yang, P., Chen, L., Huang, X., Zhang, L.: Analyzing deep neural
networks with symbolic propagation: Towards higher precision and faster veri-
fication. In: SAS 2019. LNCS, vol. 11822, pp. 296-319. Springer (2019). https:
//doi.org/10.1007/978-3-030-32304-2 15

Liu, N.: scikit-learn olivetti faces dataset olivettifaces.mat (9 2016). https://doi.
org/10.6084/m9.figshare.3829989.v2

de Moura, L.M., Bjgrner, N.S.: Z3: an efficient SMT solver. In: TACAS
2008. LNCS, vol. 4963, pp. 337-340. Springer (2008). https://doi.org/10.1007/
978-3-540-78800-3 24

Neumaier, A., Shcherbina, O.: Safe bounds in linear and mixed-integer linear
programming. Math. Program. 99(2), 283-296 (2004). |https://doi.org/10.1007/
S10107-003-0433-3

Paulsen, B., Wang, J., Wang, C.: Reludiff: differential verification of deep neu-
ral networks. In: ICSE 2020. pp. 714-726. ACM (2020). |https://doi.org/10.1145/
3377811.3380337

Paulsen, B., Wang, J., Wang, J., Wang, C.: NEURODIFF: scalable differential
verification of neural networks using fine-grained approximation. In: ASE 2020.
pp. 784-796. IEEE (2020). https://doi.org/10.1145/3324884.3416560

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., VanderPlas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine
learning in python. JMLR 12, 2825-2830 (2011). https: //doi.org/10.5555 /1953048.
2078195

Prabhakar, P., Afzal, Z.R.: Abstraction based output range analysis for neural
networks. In: NeurIPS 2019. pp. 15762-15772 (2019)

Ranzato, F., Zanella, M.: Robustness verification of support vector machines. In:
SAS 2019. LNCS, vol. 11822, pp. 271-295. Springer (2019). jhttps://doi.org/10.
1007/978-3-030-32304-2_ 14

Scheibler, K., Winterer, L., Wimmer, R., Becker, B.: Towards verification of ar-
tificial neural networks. In: MBMYV 2015. pp. 30-40. Séchsische Landesbibliothek
2015

(Sharn)la, A., Demir, C., Ngomo, A.N., Wehrheim, H.: MLCHECK- property-driven
testing of machine learning classifiers. In: ICMLA 2021. pp. 738-745. IEEE (2021).
https://doi.org/10.1109/ICMLA52953.2021.00123

Sharma, A., Wehrheim, H.: Automatic fairness testing of machine learning models.
In: ICTSS 2020. LNCS, vol. 12543, pp. 255-271. Springer (2020). https://doi.org/
10.1007/978-3-030-64881-7 16

Singh, G., Ganvir, R., Piischel, M., Vechev, M.T.: Beyond the single neuron convex
barrier for neural network certification. In: NeurIPS 2019. pp. 15072-15083 (2019)
Singh, G., Gehr, T., Mirman, M., Piischel, M., Vechev, M.T.: Fast and effective
robustness certification. In: NeurIPS 2018. pp. 10825-10836 (2018)

Singh, G., Gehr, T., Piischel, M., Vechev, M.T.: An abstract domain for certifying
neural networks. PACMPL 3(POPL), 41:1-41:30 (2019). https://doi.org/10.1145/
3290354

https://doi.org/10.1007/978-3-030-25540-4_26
https://doi.org/10.1007/978-3-030-25540-4_26
https://doi.org/10.1007/978-3-030-25540-4_26
https://doi.org/10.1007/978-3-030-25540-4_26
https://doi.org/10.1007/S00165-019-00486-Z
https://doi.org/10.1007/S00165-019-00486-Z
https://doi.org/10.1007/S00165-019-00486-Z
https://doi.org/10.1007/S00165-019-00486-Z
https://doi.org/10.1007/978-3-030-32304-2_15
https://doi.org/10.1007/978-3-030-32304-2_15
https://doi.org/10.1007/978-3-030-32304-2_15
https://doi.org/10.1007/978-3-030-32304-2_15
https://doi.org/10.6084/m9.figshare.3829989.v2
https://doi.org/10.6084/m9.figshare.3829989.v2
https://doi.org/10.6084/m9.figshare.3829989.v2
https://doi.org/10.6084/m9.figshare.3829989.v2
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/S10107-003-0433-3
https://doi.org/10.1007/S10107-003-0433-3
https://doi.org/10.1007/S10107-003-0433-3
https://doi.org/10.1007/S10107-003-0433-3
https://doi.org/10.1145/3377811.3380337
https://doi.org/10.1145/3377811.3380337
https://doi.org/10.1145/3377811.3380337
https://doi.org/10.1145/3377811.3380337
https://doi.org/10.1145/3324884.3416560
https://doi.org/10.1145/3324884.3416560
https://doi.org/10.5555/1953048.2078195
https://doi.org/10.5555/1953048.2078195
https://doi.org/10.5555/1953048.2078195
https://doi.org/10.5555/1953048.2078195
https://doi.org/10.1007/978-3-030-32304-2_14
https://doi.org/10.1007/978-3-030-32304-2_14
https://doi.org/10.1007/978-3-030-32304-2_14
https://doi.org/10.1007/978-3-030-32304-2_14
https://doi.org/10.1109/ICMLA52953.2021.00123
https://doi.org/10.1109/ICMLA52953.2021.00123
https://doi.org/10.1007/978-3-030-64881-7_16
https://doi.org/10.1007/978-3-030-64881-7_16
https://doi.org/10.1007/978-3-030-64881-7_16
https://doi.org/10.1007/978-3-030-64881-7_16
https://doi.org/10.1145/3290354
https://doi.org/10.1145/3290354
https://doi.org/10.1145/3290354
https://doi.org/10.1145/3290354

18

37.

38.

39.

40.

41.

42.

43.
44.

45.

Soaibuzzaman et al.

Singh, G., Gehr, T., Piischel, M., Vechev, M.T.: Boosting robustness certification
of neural networks. In: ICLR 2019. OpenReview.net (2019)

Soaibuzzaman, Déring, J., Kasi, S., Ringert, J.O.: MLDIiff github repository (2025),
available from https://github.com /se-buw/MLDiff

Szegedy, C., Zaremba, W., Sutskever, 1., Bruna, J., Erhan, D., Goodfellow, I.J.,
Fergus, R.: Intriguing properties of neural networks. In: ICLR 2014 (2014), http:
//arxiv.org/abs/1312.6199

Tjeng, V., Xiao, K.Y., Tedrake, R.: Evaluating robustness of neural networks with
mixed integer programming. In: ICLR 2019. OpenReview.net (2019)

Urban, C., Miné, A.: A review of formal methods applied to machine learning.
CoRR abs/2104.02466 (2021), https://arxiv.org/abs/2104.02466

Wexler, J., Pushkarna, M., Bolukbasi, T., Wattenberg, M., Viégas, F.B., Wilson,
J.: The what-if tool: Interactive probing of machine learning models. TVCG 26(1),
56-65 (2020). https://doi.org/10.1109/TVCG.2019.2934619

Z3Prover repository. https: //github.com/Z3Prover/z3, accessed on 2025-08-22.
Zhang, H., Shinn, M., Gupta, A., Gurfinkel, A., Le, N., Narodytska, N.: Verification
of recurrent neural networks for cognitive tasks via reachability analysis. In: ECAI
2020. FAIA, vol. 325, pp. 1690-1697. I0S Press (2020). jhttps://doi.org/10.3233/
FATA200281

Zwitter, M., Soklic, M.: Breast Cancer. UCI Machine Learning Repository (1988).
https://doi.org/10.24432/C51P4M, accessed on 2025-08-22.

https://github.com/se-buw/MLDiff
http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1312.6199
https://arxiv.org/abs/2104.02466
https://doi.org/10.1109/TVCG.2019.2934619
https://doi.org/10.1109/TVCG.2019.2934619
https://github.com/Z3Prover/z3
https://doi.org/10.3233/FAIA200281
https://doi.org/10.3233/FAIA200281
https://doi.org/10.3233/FAIA200281
https://doi.org/10.3233/FAIA200281
https://doi.org/10.24432/C51P4M
https://doi.org/10.24432/C51P4M

	On the Comparison of Learned Classifiers

