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Abstract. Alloy is a modeling language that combines relational first-
order logic and temporal logic while providing powerful automated analy-
ses via the Alloy Analyzer. Recent efforts in tool development and teach-
ing of Alloy have contributed the Alloy4Fun dataset enabling many anal-
yses of fine-grained model editing histories.
We present a smaller, but complementary dataset FMPals of similar edit-
ing granularity. While the Alloy4Fun dataset captures users filling in
predefined predicates, our dataset is more diverse and users develop all
parts of Alloy models including signatures, fields, facts, and commands.
We illustrate the differences between the datasets, define a Halstead met-
ric to measure the difficulty of models, and evaluate model edit paths
from both datasets on various metrics.
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1 Introduction

Alloy [13] is a modeling language that combines relational first-order logic and
temporal logic while providing powerful automated analyses via the Alloy Ana-
lyzer. Alloy has been applied to modeling software designs [23,40], code testing,
debugging, and repair [9,28,38], and to analyze security properties [1,37].

Recent efforts in tool development and teaching of Alloy have contributed
the Alloy4Fun platform [18] and dataset [17]. Alloy4Fun provides a web-based
editor with selected Alloy models and tasks inside these models. The platform
generates feedback in terms of Alloy instances for each user attempt. The Al-
loy4Fun dataset [18,17] has attracted research interest [41,2,14] as it provides
fine-grained model editing histories previously not available.

Alloy4Fun [18] focuses on writing expressions inside predefined predicates
that are then semantically evaluated against an instructor’s solution. This limits
the insight one could obtain about how novice users use Alloy, as the Alloy
language also provides elements like signatures, fields, and commands (all briefly
introduced in Sect. 2.1), which instructors provide and are not expected to be
written or modified by users in the Alloy4Fun dataset. We present a smaller but
complementary dataset with similar editing granularity. Our FMPals dataset is
more diverse, and users develop all parts of Alloy models, including signatures,
fields, facts, and commands.
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We illustrate the differences between the datasets, define a Halstead metric
to measure the difficulty of models, and evaluate model edit paths from both
datasets on various metrics.

The remainder of this work is structured as follows. Section 2 briefly presents
the foundations of our work. Section 3 lists our research questions, Sect. 4
presents our dataset and data processing. Section 5 presents the evaluation of
our research questions on the datasets. We discuss related work in Sect. 6 and
conclude in Sect. 7.

2 Preliminaries

We now give a brief overview of the Alloy language, the Alloy4Fun platform, the
Formal Methods Playground, and Halstead metrics.

2.1 Alloy

Alloy [12,13] is a textual modeling language based on relational first-order logic.
An example Alloy model is shown in Lst. 1.1 consisting of signature declarations
(ll. 1-3) with fields, e.g., field link in signature File (l. 1). Intuitively, the
semantics of an Alloy model are instances consisting of atoms and relations over
atoms where each signature is a set (unary relation) of atoms, and each field is
an n-ary relation, e.g., the field link defines a binary relation that relates each
File-atom with an arbitrary number of File-atoms (multiplicity set in l. 1).
Facts, predicates, and assertions may contain expressions in relational as well as
temporal logic, e.g., the expression no Trash in predicate inv1 (l. 5) states
that the set Trash is empty in all instances satisfying predicate inv1 . Alloy
models can be automatically analyzed [13] by the Alloy Analyzer in a bounded
scope (bounding number of atoms) via a reduction to SAT [36].

1 sig File { link : set File }
2 sig Trash in File {}
3 sig Protected in File {}
4
5 pred inv1 { /* The trash is empty. */ /* solution: */ no Trash }
6 pred inv2 { /* All files are deleted. */ }
7 pred inv3 { /* Some file is deleted. */ }

Listing 1.1: An example Alloy model from [17] with three out of 10 predicates
for the user to complete, e.g., as attempted in predicate inv1 .

2.2 Alloy4Fun

Alloy4Fun [18] is a web application for writing and analyzing Alloy models in-
tended for teaching Alloy. Alloy4Fun offers automated assessment and feedback
by requiring users to fill in predefined predicates (see the predicates in Lst. 1.1,
ll. 5-7). Each predicate is independent of the others to avoid “distracting prob-
lems corresponding to failures of other properties” [18].
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Interactions with Alloy4Fun are captured and published in the Alloy4Fun
dataset [17] collected mainly from master students’ submissions at the University
of Minho and the University of Porto between Fall 2019 to Spring 2023.

2.3 Formal Methods Playground

The Formal Methods Playground1 is a web application for writing and analyzing
models in various modeling and specification languages. We have developed this
application mainly for teaching, e.g., slides in our Formal Methods for Software
Engineering lecture [33] contain permalinks to example models on the Formal
Methods Playground for direct analysis in the browser. Currently, the Formal
Methods Playground supports Limboole2, Z3 [21], Alloy [13], nuXmv [3] and
Spectra [20] specifications.

2.4 Halstead Metrics (also Theory of Software Science)

Halstead [11] introduced various measures for software, e.g., the effort related
to the time required to write the program or the difficulty D of understanding
a program when reading or writing it. Halstead metrics are computed based on
the numbers of unique operators η1 and operands η2, and the total numbers of
occurrences of operators N1 and operands N2. Halstead difficulty is defined as

D =
η1
2

× N2

η2
, i.e.,

# unique operators
2

× # occurrences of operands
# unique operands

(1)

Shen et al. [30] have summarized early critical assessment of Halstead metrics
as well as some “tentative support” [30] from empirical studies. Shepperd [31]
criticizes three representative metrics (including Halstead’s) based on their defi-
nition and general (ab-)use. We reflect on this criticism in Sect. 4.4 and Sect. 5.6.

3 Research Questions

We aim to understand better the differences between the existing Alloy4Fun
dataset and our new dataset and how Alloy models evolve in these.

We define the following research questions:

– RQ1: In what characteristics do the two datasets differ?
– RQ2: What is the Halstead difficulty for typical Alloy Models?
– RQ3: How does Halstead difficulty evolve in Alloy modeling tasks?
– RQ4: Is Halstead difficulty related to making and fixing errors?
– RQ5: How large are editing steps in Alloy modeling tasks?

1 See https://play.formal-methods.net and https://www.youtube.com/playlist?list=
PLGyeoukah9NYq9ULsIuADG2r2QjX530nf

2 See https://fmv.jku.at/limboole/

https://play.formal-methods.net
https://www.youtube.com/playlist?list=PLGyeoukah9NYq9ULsIuADG2r2QjX530nf
https://www.youtube.com/playlist?list=PLGyeoukah9NYq9ULsIuADG2r2QjX530nf
https://fmv.jku.at/limboole/
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4 Data Processing and Metrics Computation

4.1 Experimental Data

In this study, we utilize two datasets: the publicly accessible Alloy4Fun (A4F)
dataset [17] and our new Formal Methods Playground Alloy (FMPals) dataset [34].

Our FMPals dataset contains Alloy models executed on the Formal Methods
Playground from November 2023 to January 2025. Unlike with Alloy4Fun, users
usually initiate their work with a blank canvas rather than a starter model, and
there are no fixed predicates to encode. Students at Bauhaus-University Weimar
use this platform as part of our Formal Methods for Software Engineering [33]
module. Based on user activity and the models authored, at least one additional
university uses the platform. We capture models with their analyses, timestamps,
and historical derivations structured in a parent-child relationship.

The A4F dataset includes a total of 97,755 models. However, 1,358 of these
models only serve as starting points for users and do not include user edits or lack
an executed command (cmd_i). The remaining A4F dataset consists of 96,397
Alloy models. In contrast, the FMPals dataset contains 8,219 Alloy models.

4.2 Edit Paths

Both the A4F and FMPals datasets maintain records of the previous revision of
each Alloy model. Each revision is a user submission [17], i.e., the current model
whenever the user executes an analysis. We utilize this information to reconstruct
the edit path3, allowing us to capture the sequences of edits/submissions made
by users (these edits are typically small, see Sect. 5.5).

The A4F dataset comprises a total of 5,268 unique edit paths, whereas the
FMPals dataset consists of 747 unique edit paths. In particular, the top 25% of
the edit paths have a length greater than 28 for A4F and 22 for FMPals, with
median lengths of 11 and 8, respectively. The edit paths in the A4F dataset are
all derived from 19 distinct models4 that each define multiple tasks. In contrast,
the FMPals dataset has 392 unique initial models5 within the edit paths.

4.3 Alloy4Fun Edit Paths Partitioning (from A4F to A4FpT)

The Alloy4Fun platform offers a variety of starter models, each defined by unique
signatures and empty predicates that describe distinct tasks. Users may solve
these tasks across multiple edits in any order as the tasks are independent [18]
of each other. Thus, analyzing entire edit paths might lead to wrong conclu-
sions when trying to understand how individual tasks are solved. We, therefore,

3 We adopt the terminology of [14] although interaction paths might be more fitting
as shown in Table. 3.

4 "original: the first ancestor with secrets (always the same within an exercise)"[17]
5 While most edit paths start from scratch, some edit paths share initial models pro-

vided by instructors [33].
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partitioned the original edit paths of the A4F dataset. In addition to the ex-
ecuted commands, Alloy4Fun provides information about the predicates that
users evaluated. We utilized this information to develop new edit paths that
capture users’ efforts per task and refer to this dataset as A4FpT (Alloy4Fun per
Task). Technically, we remove the task predicates for unrelated tasks from these
models. They all remain stand-alone Alloy models with the common signatures
and facts defined in their 19 starter models. For more information, readers can
refer to our replication package [32].
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Fig. 1: (a) Distribution of the edit paths length and (b) Edit steps required to
fix errors in edit paths

Fig. 1a illustrates the distribution of edit paths of the A4FpT dataset. The
partitioning process resulted in a total of 24,592 edit paths. The box plot reveals
that 75% of the edit paths have lengths of ≤ 5 for A4FpT and ≤ 22 for FMPals,
with median lengths of 2 and 8, respectively (outliers excluded from box plot).

4.4 A Halstead Metric for Alloy

The Halstead metrics, while offering an intuitive static analysis framework, have
received various criticism [30,31] on practical challenges associated with the
methodology of counting operators and operands. Halstead [11] does not provide
explicit definitions for these terms but instead characterizes their meanings as
“intuitively obvious”. Paige [24] defines operators as “all language elements which
must be used to allow the operands to be operated on”. As suggested by Salt [27]
we document our counting strategy by definitions of operators and operands and
provide an implementation in [32].
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Operator Frequency Operand Frequency
sig 3 inv1 1
no 1 inv2 1
set 1 inv3 1
in 2 Protected 1
pred 3 File 4

link 1
Trash 2

Table 1: Counting strategy of operators and operands of a model from Lst. 1.1

Counting Strategy Our counting strategy roughly follows the Alloy gram-
mar [12, App. B] extended with temporal operators added in Alloy 6 as described
in the Alloy Language Reference6.

1. Only parts of the current model are considered; the contents of imported
(operator open) models, and comments are ignored.

2. Operators are:
– Keywords: abstract , extends , var, enum , steps , sig, fun, pred ,

assert , check , run, but, else , module , open , disj , as, let,
for, fact , exactly

– Multiplicity and quantifiers: lone , some , one, all, sum, no
– Unary operators: !, not, no, set, #, ~, *, ^, always , eventually ,

after , before , historically , once , ′

– Binary operators: ∨, or, ∧, and,⇐⇒, iff,=⇒, implies , &, +, -, ++,
< : , : >, ., until , releases , since , triggered , ;, in, =, <, >,
≤, ≥, ->, [] (box join)

3. Operands are:
– literals of Int and String ; and constants: none , univ , iden
– names of modules, signatures, fields, variables, predicates, functions, and

asserts
– names and types of parameters and types of predicates and functions

4. Overloaded elements (fields, predicates, or functions) are counted once.
5. Parentheses and curly brackets are neither operators nor operands.

Table 1 illustrates an example of counting operators and operands for the
Alloy model presented in Lst. 1.1, following our established counting strategy.
The unique counts of operators and operands are 5 (η1) and 7 (η2), respectively,
while the total occurrences of operators and operands are 10 (N1) and 11 (N2),
respectively. Utilizing Eq. 1, we can calculate the Halstead difficulty as

D =
5

2
× 11

6
= 4.58

An implementation of this counting strategy is available from [32].

6 https://alloytools.org/spec.html

https://alloytools.org/spec.html
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5 Evaluation

We now present data to answer the research questions defined in Sect. 3.

5.1 RQ1: Dataset Characteristics

We evaluate characteristics of the A4F and the FMPals datasets along (slightly
modified) research questions from [14], a recent, thorough analysis of the A4F
dataset. We had to slightly modify the research questions of [14] as detailed below
and omit replication of RQs 4, 6, and 7 due to the absence of an oracle/fixed
task for models from FMPals, which would allow for deciding correct, under-, or
over-specified attempts, in this more open dataset.

Errors Users Make We build on the research questions from [14], which examine
the classification of correct and incorrect user submissions ([14], RQ1) and mis-
takes in writing formulas ([14], RQ5). We modify and extend these to identify
top-level language constructs where errors are made.

Approximately two-thirds of the models are syntactically correct, at 70.9%
for A4F and 66.3% for the FMPals dataset. Conversely, around one-third are
syntactically incorrect, with 29.1% for A4F and 33.7% for the FMPals dataset.

The syntactically incorrect models include both syntax and type errors. As
shown in Table 2, these error types are evenly distributed in the A4F dataset.
In contrast, the FMPals dataset has a significant prevalence of syntax errors at
77.6%, with type errors making up just 22.4%.

Finally, Table 2 indicates top-level language constructs where users face the
greatest challenges. In A4F, nearly all errors are found within predicates, which
is expected since users must only complete these. Conversely, the FMPals dataset
indicates that users similarly struggle with writing predicates and facts (25.7%
and 31.6% of errors), but also with signatures (15.5%) and commands (15.5% +
3.6%). This shows the importance of additional datasets like ours as users also
make errors in parts not assessed by the A4F dataset.

Dataset Type Syntax sig pred fact assert fun run check

A4F # 13 657 13 734 72 27 202 26 1 52 22 11
% 49.9 50.1 0.002 99.3 ≈ 0.0 ≈ 0.0 0.001 ≈ 0.0 ≈ 0.0

FMPals
# 566 1 962 376 625 769 101 97 378 87
% 22.4 77.6 15.5 25.7 31.6 4.2 4.0 15.5 3.6

Table 2: Error category and location of the errors for A4F and FMPals dataset

Submission Similarity RQ2 from [14] examines the prevalence of syntactically
and semantically unique submissions. We focus on syntactic similarity as a se-
mantic comparison is easy on the predicate-level (sufficient for A4F), but more
complex on the model-level [26] (as it would have been required for FMPals).
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A4FpT FMPals

# % # %
Syntactically Unique Models 57 777 59.9 3 513 42.7

Syntactically Correct Models (in unique models) 37 024 64.1 1 880 53.5
Syntax Error (in unique models) 20 753 35.9 1 633 46.5

Models within single edit paths:
Consecutive Identical Models 4 664 4.64 3 174 25.58
Non-Consecutive Identical Models 5 758 5.73 667 5.38
Table 3: Syntactically unique models in the A4FpT and FMPals datasets

Table 3 demonstrates that many user submissions comprise syntactically
unique models. Specifically, the A4F dataset reveals that 59.9% of models main-
tain syntactic uniqueness, in contrast to 42.7% observed within the FMPals
dataset. Among these submissions, 64.1% of models in the A4F dataset are syn-
tactically correct, whereas 35.9% are incorrect. Conversely, the FMPals dataset
indicates a syntactic correctness rate of 53.2% among the unique models, with
46.4% of the models being incorrect. The A4F dataset demonstrates significantly
more unique models than the FMPals dataset. Further analysis reveals (Table 3,
bottom) that for FMPals 25.6% of consecutive models in edit paths are identical
(only 4.6% in A4FpT). We believe that users repeatedly browse instances and
thus analyze the same model again. The Formal Methods Playground, as the of-
ficial Alloy Analyzer, only allows showing the next instances, whereas Alloy4Fun
also allows for navigating previous ones. It might be worthwhile implementing
this backward navigation feature in the Formal Methods Playground and the
Alloy Analyzer as well. Additional contributors to this difference might be that
instances displayed on the Alloy4Fun platform are usually counterexamples that
come with semantic classifications. This task-specific information might reduce
the amount of instances users choose to inspect.

Fixing Errors We adapt RQ3 from [14], which examines invalid submissions and
the effectiveness of Alloy’s compiler-based error reporting, by focusing specifi-
cally on how users fix errors over multiple edit steps.

Approximately one-third of the models are deemed invalid in both the A4FpT
and FMPals datasets. To gain further insights into how users address these issues,
we analyze the presence of errors within the edit paths associated with the
models. The results are summarized in Table 4. In the A4FpT dataset, 39.24%
of the edit paths contain at least one erroneous model, with 3.80% consisting
entirely of erroneous models. In comparison, the FMPals dataset reveals that
54.08% of the edit paths include at least one erroneous model, and 6.55% are
comprised entirely of erroneous models.

Fig. 1b depicts the edit steps necessary to correct the errors, i.e., the numbers
of consecutive, syntactically invalid models until reaching a syntactically correct
one. In the A4FpT dataset, users generally require a median of 1 revision to
resolve errors, with 75% needing less than or equal to two revisions for complete
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A4FpT FMPals

Edit paths (#) 24 592 747
With Invalid Models (%) 39.24 54.08
Without Valid Models (%) 3.80 6.55
Edit Path Length ≥ 5 (%) 25.93 64.79

Max Edit Path Length 107 211
Table 4: Details of syntactically invalid models in edit paths

correction. Likewise, in the FMPals dataset, users also show a median of 1 revision;
however, 75% of them need less than or equal to 3 revisions to address the errors.
This could point to more complex errors experienced by users within the FMPals
dataset. A distinction between specific error types might be helpful for future
analyses.

5.2 RQ2: Halstead Metrics for Typical Models

We aim to assess modeling difficulty using Halstead difficulty as defined in
Sect. 4.4. As an intuitive baseline, we analyze the sample models provided with
the Alloy Analyzer to assess the Halstead difficulty of well-known Alloy models.
These ca. 80 models comprise four categories: Algorithm, Book, Case Study, and
Temporal. Fig. 2a presents the Halstead difficulty for each category.

The Book category comprises example models from [12]. Most of these models
exhibit a difficulty rating ranging from 11.9 to 60.4, with a median difficulty of
27.2. In contrast, the Case Studies category includes Alloy case studies, e.g.,
analyses of the Firewire [8] and Chord [39] protocols, and exhibits much higher
Halstead difficulties between 130.8 and 176.4, with a median value 140.8.

We selected the final submitted Alloy model from each edit path to com-
pare the Halstead difficulty of the A4FpT and FMPals datasets with typical Alloy
models. Fig. 2b presents a box plot of the Halstead difficulty for these final sub-
missions across both datasets. The results indicate that the A4FpT and FMPals
datasets exhibit similar Halstead difficulty levels to the Book category of typ-
ical Alloy models shown in Fig 2a. This is no surprise, as both platforms are
mainly used in teaching contexts. However, the FMPals dataset demonstrates
greater Halstead difficulty than A4FpT, with median values of 20.3 and 16.3, re-
spectively. Furthermore, the plot suggests that the FMPals dataset demonstrates
greater variability in Halstead difficulty compared to A4FpT.

5.3 RQ3: Evolution of Halstead difficulty

We analyzed both datasets using clustering and standard deviation to examine
how Halstead difficulty evolves during Alloy modeling tasks.

We performed KMeans clustering on the Halstead difficulty scores of models
in both datasets. The clustering allowed us to group edit paths with similar dif-
ficulty levels, revealing how difficulty changes over time across different revisions
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Fig. 2: Halstead difficulty of (a) typical Alloy models from the sample models of
Alloy Analyzer and (b) last submitted models of the A4FpT & FMPals edit paths

of the models. We identified eight distinct clusters in the A4FpT dataset, while
the FMPals dataset revealed three clusters. This variation reflects the differing
complexity and characteristics of the models within each dataset.

In addition, we incorporated standard deviation into our analysis to assess the
consistency of difficulty levels within each cluster. It offers insights into whether
the evolution of difficulty is stable or erratic across edit paths within a cluster.

Figure 3 and Fig. 4 demonstrate the evolution of Halstead difficulty for the
A4FpT and FMPals datasets, respectively. These plots illustrate the mean diffi-
culty scores for each cluster over time, spanning across edit path steps. Shaded
regions represent the standard deviation, offering insights into how the difficulty
of models within each cluster varies as users refine their Alloy models.

In our analysis of Halstead difficulty within the A4FpT dataset, we found
that the standard deviation for seven of the eight clusters was relatively low,
ranging from 0 to 20. This indicates that the models within these clusters display
consistent difficulty levels throughout their revisions.

Cluster 4 is the largest, comprising 9,675 edit paths, and is characterized by
relatively low difficulty levels, with fewer than 20 revision steps required. Other
significant clusters with larger model counts include Clusters 1, 3, 5, and 8, each
containing thousands of edit paths. These clusters typically involve less than
30 revision steps, suggesting that the tasks in these groups are generally less
complex requiring fewer edits.

Cluster 6, which consists of only 24 edit paths, displays significantly higher
difficulty levels, ranging from 30 to 50. Further investigation revealed that most
of the models in this cluster originate from the Train Station modeling problem
from the EM 20/21 dataset. This suggests that this particular task may be
inherently more complex than others in the dataset.
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Fig. 3: Clustered Halstead difficulty of A4FpT dataset. The shaded region repre-
sents the standard deviation for each cluster

1 always all f: File | (f not in Protected and f not in Trash) implies f in
↪→ Protected ’

2 always all f: File | always f not in Protected implies f in Protected ’
3 always all f: File | eventually f not in Protected implies f in Protected ’
4 always all f: File | f not in Protected implies after f in Protected
5 always all f: File | f not in Protected implies f in Protected ’

Listing 1.2: An example investigation on the decline of difficulty over edit paths

A common observation across nearly all clusters of the A4FpT dataset is a
noticeable decrease in difficulty at the end of the editing process, accompanied
by a narrow standard deviation. We investigated this trend and discovered that
the decline may be linked to users making significant changes, such as removing
entire constraints to fix errors in their models. Users often begin with a more
complex constraint and gradually simplify it over time. Listing 1.2 provides an
example of this revision strategy where each line is a separate edit. Note that
Listing 1.2 shows the predicate body only while the Halstead difficulty is always
computed for the whole model.

In the FMPals dataset, we identified three clusters of Halstead difficulty. The
largest cluster, Cluster 1, with 592 edit paths, demonstrates a broad range of
Halstead difficulty values, spanning from 0 to 50, which indicates variability in
model complexity within this group. Cluster 2 is noteworthy due to its elevated
difficulty levels, ranging from 25 to 175. Upon further analysis, we discovered
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that most of the models in this cluster were generated automatically7 rather
than being crafted by users, which may account for the higher difficulty levels
observed. Cluster 3, consisting of only 43 edit paths, is the most diverse regarding
difficulty, reflecting a broad spectrum of complexity. This diversity suggests that
the models in this cluster embody a broad array of challenges.

5.4 RQ4: Metrics related to Errors/Fixing

Correlation Between Halstead difficulty and Time to Fix Errors To investigate
whether higher Halstead difficulty is linked to error-fixing times, we calculated
the Spearman correlation coefficient between the Halstead difficulty of each first
syntactically incorrect model and the total time required to rectify its errors.
We focused our analysis on models that underwent at least one revision and
excluded cases where the time difference exceeded 600 seconds to concentrate on
active revision sessions.

For the A4FpT dataset, the Spearman correlation coefficient was −0.032
(p = 0.006). This negative correlation indicates a weak association, suggest-
ing that higher Halstead difficulty is correlated with slightly shorter error-fixing
times. However, the small effect size and low correlation strength imply that this
relationship is likely not practically significant.

Conversely, for the FMPals dataset, the Spearman correlation coefficient was
0.236 (p < 0.0001), revealing a weak yet statistically significant positive cor-
7 The models were generated as part of a student project based on [29]
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relation between Halstead difficulty and the time taken to correct errors. This
suggests that in the FMPals dataset, models with higher Halstead difficulty tend
to require more time for error correction. Although this correlation is stronger
than that observed in the A4FpT dataset, it still remains relatively weak.

These weak correlations indicate that other factors—such as model structure,
user expertise, or the nature of the errors—may play a more significant role in
determining error resolution time.

Correlation Between Halstead difficulty and Error Occurrence To explore the
impact of Halstead’s Difficulty on the likelihood of errors, we performed a logistic
regression analysis on both datasets. In this analysis, the dependent variable
indicated whether a model contained an error, with Halstead difficulty as the
independent variable.

For the A4FpT dataset, the results revealed a weak negative correlation be-
tween Halstead difficulty and error occurrence, with a coefficient of −0.0167
(z = −10.84, p < 0.001). Although this finding is statistically significant, the
effect size is minimal, as demonstrated by the low pseudo − R2 value of 0.0010
and the Point-Biserial correlation of −0.0339.

This suggests that models with higher Halstead difficulty are slightly less
likely to contain errors. However, this difference is negligible, suggesting that
factors beyond difficulty have a more pronounced influence on error occurrence.

In contrast, the FMPals dataset indicates a weak positive correlation be-
tween Halstead difficulty and error occurrence, with a coefficient of 0.0034 (z =
6.28, p < 0.001). While this relationship is statistically significant, it remains
small, as indicated by the pseudo−R2 value of 0.0027 and a Point-Biserial cor-
relation of 0.0587. This suggests that models with higher Halstead difficulty are
slightly more likely to experience errors in the FMPals dataset.

In summary, while the statistical analysis suggests a modest association be-
tween Halstead difficulty and error occurrence, the effect sizes in both datasets
are petite.

5.5 RQ5: Edit Distance and Difficulty Delta

To better understand how users evolve Alloy models, we have computed Lev-
enshtein distances [15] between consecutive models, i.e., the minimal number of
characters modified to transform one into the other. We show box plots of Lev-
enshtein distances between consecutive, non-identical models for both datasets
in Fig. 5a. The median and 75th percentile of the edit distance in the A4FpT
dataset are relatively small, with 10 and 28. They are significantly larger in the
FMPals dataset with 25 and 123. This is expected for the A4FpT dataset, as most
edits are confined to a single line in a predicate. It also shows that users typically
analyze their models frequently, not only when solving predefined tasks.

In addition to Levenshtein distances, we have also computed and aggregated
changes in Halstead difficulty in Fig. 5b. Note that Fig. 5b aggregates the differ-
ence not in absolute terms and thus also shows decreases in Halstead difficulty,
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Fig. 5: (a) Distribution of the edit distance (Levenshtein distance) and (b) Hal-
stead difficulty differences in edit chain

e.g., for both datasets more than 25% of the edit steps decrease the model’s Hal-
stead difficulty. This is no surprise as we have seen negative trends in particular
for the A4FpT dataset already in Fig. 3 and Fig. 4. Again, the median values
and 75th percentile show that larger change sizes in the FMPals are also reflected
in larger differences of Halstead difficulty between edited models.

5.6 Threats to Validity

We now identify and discuss various threats to the validity of our analyses.
First, we have processed the A4F dataset from [17] to obtain edits per task

as described in Sect. 4.3. To ensure correctness we have performed manual in-
spection of the resulting edit paths as the excerpt shown in Lst. 1.2. In addition,
for transparency and reproducibility we provide the implementation of our pro-
cessing in [32].

Second, we assume that the use of the Formal Methods Playground across
the dataset is similar to that of our students, i.e., small models are created and
analyzed. However, we have no control over how other users use the publicly
available platform, e.g., it could be used for teaching with very narrow task
definitions. To assess this uncertainty, we have assessed unique initial nodes of
edit paths in Sect. 4.2, giving some confidence in the models’ variability (392
in FMPals vs. 19 in A4FpT). In addition, we have manually inspected the edit
paths’ clusters as described in Sect. 5.3, identifying a small number of (partially)
generated models inside the dataset.

Third, existing resources on Halstead metrics do not contain formal defini-
tions of operators and operands and we are not aware of previous applications
of the metrics to Alloy. Following best practices suggested by Salt [27] we have
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clearly defined our counting strategy in Sect. 4.4 and provide an implementa-
tion for reproducibility and inspection at [32]. We cannot rule out that different
counting strategies would change the data presented across Sect. 5.

Finally, the use of metrics like the Halstead difficulty has been criticized for
being employed as indicators when they show low or no evidence of correlation
with various phenomena [30,31]. Our use of the metrics is rather descriptive, and
we have carefully analyzed possible correlations with errors and times required
to fix these in Sect. 5.4.

6 Related Work

In recent years, an increasing amount of work has been invested to understand
how novice users use formal methods and, in particular, the Alloy language.
Mansoor et al. [19] performed an exploratory study where users fix Alloy models
and also create them from scratch. They report that users (both novices and non-
novices) find it hard to start Alloy models from scratch [19]. Our new FMPals
dataset [34] exhibits these challenges.

Many works have analyzed the popular Alloy4Fun dataset [18,17]. Zheng et
al. [41] and Cerqueira et al. [4] use it to evaluate their model repair approaches.
Our analysis in Sect. 5.1 shows that the FMPals dataset is complementary in
locations and kinds of issues exposed and might be beneficial for works on model
repair. Barros et al. [2] used the Alloy4Fun dataset to generate suggestions for
the next edits based on similar models written by other users. This approach
relies on fixed tasks and known goals of edits, which are not given for our dataset.

Cunha et al. [6] have assessed what kind of hints best support novice users in
fixing faulty Alloy models. Datasets like ours and platforms like Alloy4Fun and
the Formal Methods Playground would allow large-scale comparative analyses
of the strategies suggested above on diverse models and modeling tasks.

Another line of work has focused on improving instance generation for Alloy
models [22,16,35,25] and understanding how different strategies support users
in understanding Alloy models [10,5]. These and the ambitious early user study
by Danas et al. [7] highlight the difficulty of setting up controlled studies and
evaluating data from multiple sources, e.g., interviews and tool instrumentation.
While our dataset is much more diverse, we are only able to make general obser-
vations due to absent task descriptions and characteristics of individual users.

Closest to our current work is the analysis of the Alloy4Fun dataset by Jo-
vanovic and Sullivan [14]. They extensively analyze user edits syntactically as
well as semantically, i.e., whether predicates are over- or under- constrained.
We adapt their research questions as described in Sect. 5.1 to compare our new
dataset to the one of Alloy4Fun. In addition, our analysis introduces and inves-
tigates a Halstead difficulty measure for Alloy models and strongly focuses on
edits performed on edit paths.
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7 Conclusion

We have presented the Formal Methods Playground Alloy (FMPals) dataset and
compared it to the well-known Alloy4Fun (A4F) dataset. Our comparison shows
that additional datasets are worthwhile as the A4F dataset is limited to user
edits in predicates while our FMPals dataset shows challenges in writing other
language constructs as well.

Our analysis focused on the evolution of model complexity as characterized by
the Halstead difficulty metric we adapted for Alloy models. The FMPals dataset
exhibits more stable growth of the Halstead difficulty of models in edit paths,
while the A4FpT shows interesting dips as edit paths terminate. These trends
indicate iteratively growing models in the FMPals dataset and debugging behavior
in the A4FpT dataset. Interestingly, the Halstead difficulty shows only a (very)
weak correlation with error prevalence and fixing times in both datasets, i.e., it
does not seem to be suitable indicator for the difficulty of fixing errors in Alloy
models.

Finally, an observation on repeated analyses of identical models in the FMPals
dataset suggests for tool improvements and for further analyses of how users
interact with generated instances.

8 Data Availability

We have made the Formal Methods Playground Alloy (FMPals) dataset publicly
available on Zenodo as [34]. As the use of the Formal Methods Playground
increases, we plan to follow the example of [17] and provide updates to this
dataset.

In addition, to support reproducibility of our metrics computations and the
preprocessing of the A4FpT dataset, we have made the implementation used for
our analyses available in a GitHub repository as [32].
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