
Batbayar Battseren et al. (ISCSET - 2021)

21

Deep-Learning-Based Insulator Detector for Edge
Computing Platforms

Batbayar Battseren
Department of Computer Engineering

Chemnitz University of Technology
Chemnitz, Germany

batbayar.battseren@informatik.tu-
chemnitz.de

Mohamed Salim Harras
Department of Computer Engineering

Chemnitz University of Technology
Chemnitz, Germany

mohamed-salim.harras@informatik.tu-
chemnitz.de

Soaibuzzman
Department of Computer Engineering

Chemnitz University of Technology
Chemnitz, Germany

soaibuzzman@s2019.tu-
chemnitz.de

Abstract—In the past years, the object detection applications
have witnessed a rapid increase in usage of deep-learning (DL)
based solutions, due to their accurate object detection, and
robustness to illumination, scale, clutter, rotation changes, etc.
Therefore, DL-based approaches started to be used in real-time
applications. In an autonomous aerial inspection system, the
robust detection and time requirement are critical aspects for
the real-time perception and decision making. However, most of
the DL models are not suitable for the edge computing
platforms, due to their heavy sizes and poor reliability. This
paper presents the experimental results obtained from a
YOLOv4-Tiny model with a CSPDarknet-53 backbone on
different single board computers. The study demonstrates that
the performance of the adopted approach is highly dependent
on the target platform; and the real-time object detection is
reachable in specific cases.

Keywords—deep learning, object detection, power line
inspection, insulator, embedded device, edge computing,
autonomous system, unmanned aerial vehicle

I. INTRODUCTION

Unmanned aerial vehicles (UAV) have been used in the
past years for different kinds of critical infrastructure
inspection, due to the benefits that they offer. The UAV-based
inspection provides a number of advancements in the high
voltage power line inspection process compared to the
conventional methods. For instance, no human life is at risk,
no voltage cut-offs, high-quality data collection, high
accessibility, less time consumption, and lower cost.
However, there are still some weaknesses in the UAV-based
inspection which are mainly caused by external factors like
the weather condition, the environmental difficulty, or by the
pilot experience, response time, or fault.

The power line inspection is a highly automatable
sequential process, and most of the object inspections can be
performed using vision cameras. The Autonomous Power
Line Inspection (APOLI) project addresses the
abovementioned problem by offering an autonomous solution
for these processes [1]. The advantages are that the
autonomous system can perform repeated processes without
any problem, have a better control and response time in strong
environmental conditions, and provide a better quality
inspection.

The unmanned aerial system (UAS) that was developed
consists of three main components, which are the copter, the

camera setup, and the companion computer. Technically, the
copter could be any type of multi-copter that has enough
payload to carry the autonomous system’s additional
components. The flight controller should be open source or
controllable by external commands. The camera setup is
equipped with navigation and inspection cameras which are
mounted on a 3-axis gimbal. The dual-camera configuration
delivers simultaneously a wide-angle navigation view and a
narrow-angle high-resolution inspection view. The
companion computer is directly mounted on the copter in
order to run the image processing and autonomous decision-
making algorithms in real-time.

In order to develop this type of autonomous system, we
proposed an Adaptive Research Multicopter Platform
(AREIOM) destined for being applied within the APOLI
project [2]. Fig. 1 illustrates the AREIOM software and
hardware architecture, where the software components are
mapped on a dedicated hardware component. There are
several software components developed to execute the
inspection mission automatically, namely Expert System
(EXS), MAVLink Abstraction Layer (MAL), Camera Gimbal
Control (CGC), Acquisition (ACQ), Navigation Image
Processing (NIP), and Inspection Mission Recorder (IMR).

Companion Computer

FLC

CGC

EXS MALNIP

IMR

Gimbal

Inspection
Camera GCS

5GHz

433MHz

ACQ
Navigation

Camera

Fig. 1. AREIOM software and hardware architecture

The EXS plays a leading role in running the inspection
mission and making real-time decisions [3], while the MAL
sends and receives messages from the Flight Controller (FLC)
[4]. Together, they work as a flight subsystem. At the same
time, the ACQ, the NIP, the IMR, and the CGC are acting as
a vision subsystem. The ACQ acquires the live video feed
from the cameras and provides it to other processes like the
NIP and the IMR. The CGC points the cameras into the
desired direction with the help of the NIP output. The NIP
detects the inspection object, and the IMR records high-
resolution inspection data.

Batbayar Battseren et al. (ISCSET - 2021)

22

In this paper, we discuss the navigation image processing
part, specifically the deep-learning (DL) based insulator
detection, including the model training and the experiments
performed on different embedded devices.

II. RELATED WORK
Over the past decade, the DL approaches for object

detection have seen a consistent increase. This increase was
met with a high demand for inspection routines using UAVs
equipped with cameras. With the help of edge computing
devices and high-performing cameras, inspection routines
based on DL became a topic of active research lately.
Throughout the DL training and learning of image features,
structures are detected accurately and at faster speeds. UAV-
based autonomous inspection system requires a continuous
stable detection of the insulator string in order to control the
flight and inspect the insulators.

A. Feature-Based Insulator Detection
We developed a traditional image processing algorithm for

insulator detection, which detects the target object without any
machine learning method and parallelism [5]. This approach
detects the insulator string based on its unique features, which
are symmetrical shape and repeated color pattern. Initial
localization of the insulator takes place based on symmetry
analysis. The aforementioned analysis extracts image features
(pixel intensities, edges) and analyses the edges for symmetry
in the Hough space. In the study, we tested the approach on
lab images with a solid white background which led to a robust
detection of insulators. The same approach was developed
further for real-life images in [6]. To achieve the same result
in a real-life scenario without using the DL, a color feature-
based signal representation analysis method was introduced.
In addition to the previous method, this approach detects the
repeated color pattern of the insulators on the symmetry axes,
which completes the region of interest (ROI) of the insulator.
Moreover, an insulator burn-mark damage detection method
in [7] was improved and used in the real-life scenario in this
study.

The measured average detection frame rate was 15 fps on
the machine with an i5 CPU and 8GB RAM configuration.
Though this method was computationally expensive and very
slow in terms of performance, it has been tested on the Odroid
XU4 single board computer (SBC), and the average detection
rate was only 5.48 fps. It also led to many false detections
since the color feature could be affected by any external
factors like illuminance, view angle, reflection, camera
configuration, etc.

Jabid et al. [8] defined an approach based on spatial
features. The method makes use of morphological operations
and defines a spatial model for the detected object. In their
method, the concept of a sliding window based local
directional pattern (LDP) feature is extracted and support
vector machines are used for the classification of the extracted
windows.

B. Deep-Learning-Based Insulator Detection
In the past year our team have already conducted several

DL based solutions in related studies and projects [9, 10]. In
these studies, DL were used in collision warning, outdoor
navigation, and depth estimation application. In [11], DL-
based single insulator detector approach presented. In the
Master Thesis report published at Chemnitz University of

Technology [12], a student proposed a DL-based approach for
burn-mark detection. A YOLOv5 network has been chosen,
and the learning stage is performed with both passive and
active approaches. The active learning approach allowed to
have a lightweight model with similar or higher accuracy.

Naeem et al. [13] presented a DL-based autonomous
vision system to detect faults on insulators based on a
YOLOv4-tiny network architecture [14]. To evaluate the
performance of their model, the YOLOv4-tiny results were
compared to YOLOv3-tiny network architecture on different
edge-computing devices such as the Raspberry Pi 4, Nvidia
Jetson Nano, Nvidia Jetson TX2, and Nvidia Jetson AGX
Xavier. They concluded, using YOLOv4-tiny, real-time
detection can be realized on-board of Nvidia Jetson AGX
Xavier without a trade-off of accuracy.

Adou et al. [15] proposed a method for insulator bunch-
drop detection based on deep learning. The authors opted for
the YOLOv3 model to train their network. In fact, two labels
were defined for the insulator and the bunch-drop. The model
classifies the detected objects and allows to localize the
insulator. Logistic regression is the tool used for performing
classes probabilities and labels predictions within the YOLO
model. The proposed method was able to perform well on a
desktop, processing frames at 45 frames per second with a
mAP of 83,52%.

In [16], the authors defined a cascading approach
composed of the detection network and the classification
network. The first network allows to detect the insulators
based on RPN, which are then fed to the classification network
for fault detection. This allowed for the reduction of the
computational cost, while the accuracy and the robustness of
the model improved considerably.

A different study targeted the detection of the insulator
using the YOLOv2 model [17]. The proposed method used
data augmentation to increase the size of their dataset and
avoid over-fitting. Hence, they recorded a mAP of 88% with
an average prediction time of 0,04 seconds, allowing them to
run at real-time.

A deep CNN cascading architecture is introduced in [18]
based on the concatenation of VGG and ResNet in a Region-
Based Convolutional Neural Network (R-CNN) for the
localization of defects on insulators. The cascading
architecture allows for two-stage object detection. The
localization of the insulator is based on a region-based
proposal (RPN) approach and is then followed by the
localization of defects in the proposed regions. Another
research [19] based the localization of the insulator on a Faster
R-CNN, an improved version of R-CNN that cuts the running
time of the RPN [20].

In a benchmark published by Nvidia [21], several models
with their image resolutions have been tested for inference on
most edge computing devices produced by Nvidia, and the
ResNet network along with YOLOv4-tiny and SSD (Single-
Shot Detection) networks perform best on embedded devices.

In contrast to two-stage detection methods, Lui et al. [22]
propose a single-shot detector (SSD) based on the VGG16
model for feature extraction. The latter bases its prediction on
21 class scores for every detected instance. By excluding the
region proposal network (RPN), the network is able to meet

Batbayar Battseren et al. (ISCSET - 2021)

23

the real-time requirements while allowing for fair detection
accuracy.

III. DEEP LEARNING MODEL TRAINING

Fig. 2 illustrates the main steps of the DL-based insulator
detector implementation. The data preparation and model
training points are discussed in this section. The model
deployment is discussed in detail in the next chapter.

Embedded Device

Google Colab

Data
Collection

Data
Labelling

Data
Augmentation

DNN Model
Training

Trained
Weight

Model
Evaluation

Best
Weight

Camera Detector
Inference Result

Data Preparation

Model Training

Model Deployment

Fig. 2. Workflow of the DL-based insulator detector implementation

A. Dataset Preparation
In the APOLI project, the main inspection object is the

high voltage power line insulator, which is an essential part in
the power pole. It holds the wire without making any electrical
connection with the power pole. The insulators are generally
linked together to form what is called an insulator string, and
the number of the insulator is defined by the voltage level.
Though there are different types of insulators available on the
market, the specific insulator targeted in this study is the PS-
70 glass insulator, which is commonly used in many countries
(Fig. 3).

Insulator

Insulating glass

Cap

Fig. 3. High Voltage Power Line Insulator

From the computer vision perspective, insulators have
their unique features. As they are rotating objects, they have
symmetric representation on the image. Furthermore, as they
are partially made of glass, they are reflective, and their color
changes depending on the environment and the view angle.

1) Data collection
According to empirical bounds for training datasets on

computer vision, a rule of thumb is 1,000 images per class
[23], though this number can be reduced if pre-trained weights
are used. The image resolution is 640×640 and the dataset is
collected from real high voltage power line inspection videos,
which are recorded under the APOLI project from 2016 to

2019. The whole dataset is categorized into four distinct
categories based on their quality and captured environment:
good, average, bad, and indoor. The good dataset contains a
huge diversification on images with different angles and
backgrounds in good quality, whereas the average and bad
datasets hold less quality and blurry images. The indoor
images are captured in the lab in different lighting conditions.
This variation of the dataset helps to make the model more
robust, hence, to deal with the over-fitting problem.

After that, images are selected randomly from the training
set based on a constant selection ratio. This ratio is selected
heuristically: 35% of the image from the good category, 25%
of the image from the average category, 20% of the image
from the bad category, and 20% of the image from the indoor
category.

2) Data augmentation
In order to provide more robustness to the network, data

augmentation techniques are applied to the selected images.
Detecting the insulator at different angles is a significant
challenge when these kinds of images are not included in the
dataset. This challenge is overcome by rotating and flipping
the training images at a certain angle. Moreover, a salt and
pepper filter was applied to make the model robust against the
high-frequency noise. The following list depicts the three
chosen augmentation techniques:

Rotation: Both 90° clockwise and anti-clockwise
rotations are applied to create scenes with horizontal
insulator strings. The dimension is preserved after
rotation.

Flip: Only horizontal flip is applied. This is mainly
to create scenes with inversed insulators.

Noise: A high pass filter is used. The purpose of this
filter is to create scenes where the UAV’s camera
feed is blurred by sudden UAV movements. A 2%
salt-and-pepper filter is applied to each image to
distort the high-frequency features.

A canvas of the original image and the augmented images
are illustrated in Fig. 4.

(a) (b) (c)

(d) (e)

Fig. 4. Illustration of image samples with augmentation, (a) original image,
(b) horizontal flipped image, (c) 90° anti-clockwise and (d)
90°clockwise rotation, and (e) 2% salt & pepper noise is added in the
original image.

Batbayar Battseren et al. (ISCSET - 2021)

24

B. Model Training
Being computationally extensive, region proposals-based

two-step object detection algorithms are not feasible for
resourced constrained embedded systems. By compromising
some accuracy, it is possible to gain a significantly higher
inference speed with a regression-based one-stage approach.
There are a few prominent one-stage object detection
algorithms are available out there such as SSD and YOLO. To
meet the edge computing requirements, a trade-off in accuracy
is unavoidable.

1) Model Selection
Nvidia Jetson Nano is considered as the main target

platform for the inference phase in our application. An
inference benchmark for DL-based object detection methods
on Jetson Nano is developed by the Nvidia developers’
community [24]. In this benchmark, SSD with a mobilenet-v2
backbone performed the inference at a faster speed compared
to Tiny YOLOv3. Though the inference speed is a bit higher
for SSD, the Tiny YOLOv3 showed a much better
performance in terms of accuracy with a mean average
precision (mAP) of 0.70 at an intersection over union (IoU)
threshold of 0.5 on the MS COCO dataset [25]. The further
success of the YOLO family, YOLOv4-tiny [26], allowed for
an increase in the usability of object detection applications in
edge computing systems.

The size and required computational power for YOLOv4-
tiny are much smaller compared to YOLOv4. It uses the
CSPDarknet53-tiny network as the backbone which uses the
CSPBlock module in cross SPN instead of the ResBlock
module in the residual network of CSPDarknet53 (Fig. 5).
Hence the numbers of convolutional layers are compressed.
However, considerable precision is still maintained. To make
the computation procedure more efficient, the LeakyReLU
activation function is used in the YOLOv4-tiny instead of the
Mish activation function. To increase the object detection
speed, rather than using YOLOv4’s SPP and PAN, it uses two
different scales feature maps that are 13×13 and 26×26 to
predict the detection results.

The adopted methodology for the study is based on a
YOLOv4-tiny network, a regression-based one-step object
detection algorithm, and the CSPDarknet53-tiny model
backbone.

CSPBlock
Input Backbone (CSPDarknet53-tiny)

Input OutputConv
3x3

Conv
3x3

Conv
3x3

Conv
1x1

Concat

Concat

Neck Head
FPNetwork Prediction

Fig. 5. Architecture of proposed YOLOv4-tiny model with CSPDarknet53-
tiny

2) Training Configuration
To build the CSPDarknet53-tiny environment some

dependencies need to be fulfilled such as – OpenCV, Cuda
Toolkit, cuDNN, and GPU architecture. To enhance this
process, Google Colab with Tesla K80 GPU is used. The pre-
trained weights of YOLOv4-tiny are used for accelerating the
training process and getting better accuracy. A few other

configurations have been done to train the model. This optimal
configuration has been made based on the official GitHub
repository of YOLOv4. Hence, the model architecture is
adjusted depending on the number of defined classes in the
dataset. The configurations are:

Batch = 64
Subdivision = 16
Max batches = classes×2000, but not less than the
number of training images and not less than 6000.
Steps = 80% and 90% of the max batches i.e.,
steps=4800; 5400.
Filters = (classes + 5) × 3 i.e., 18 for our one class.
Width = 416 & Height = 416.
Learning rate = 0.00261

The model is trained for 6000 epochs with this
configuration. There are 9 weight files created once the
training process is completed. One for every 1000 epochs,
hence 6 in total. The other 3 weight files are – the best, final,
and the last. We used the best weights file for our inference
which provides the highest accuracy.

C. Model Evaluation
For the model evaluation, confusion matrix-based metrics

are used. There are four main terms in the confusion matrix,
namely True Positive (TP), True Negative (TN), False
Positive (FP), and False Negative (FN), which are used for
calculating the accuracy, precision, recall, and F1-score. The
accuracy presents the number of correct classification over the
total number of data (1). The precision represents what
percentage of the positive prediction were true (2). The recall
calculates what percentage of the actual positive were
predicted correctly (3). The F1-score combines the precision
and recall into a single metric (4). In addition, IoU score is
used as an evaluation metric (5) measures the detection
accuracy based on the ground truth and the prediction.= (1)= (2)= (3)1 = 2 (4)= (5)

Fig. 6 illustrates the calculated loss and mean average
precision (mAP) of the proposed model during the training
period. The combination of the precision and recall curve is
called the precision-recall curve (PRC). The area under the
PRC expresses the mAP. The higher the value of mAP, the
better the accuracy of the model. The red line represents the
mAP over the training iteration, while the blue line represents
the loss. The mAP was 93,7 % after 6000 iterations. The
binary cross-entropy is used for the loss function and the
average loss was 0.0702.

In order to evaluate how the model performs, three
different unseen datasets were prepared. The first dataset is
collected from the inspection videos, which are recorded by
Yuneec E90 high-resolution camera, while the second dataset
is taken with FLIR Blackfly S camera. The third dataset is

Batbayar Battseren et al. (ISCSET - 2021)

25

gathered from an indoor setup with a FLIR camera. In order
words, the first two datasets are collected from the same
environment with different cameras, while the second and
third datasets are collected from a different environment with
the same camera. Fig. 7 presents the confusion matrix of the
trained model under different IoU thresholds on the first
dataset.

mAP = 93.7%
Average loss = 0.0702

Iteration = 6000

Iteration number

Lo
ss

m
A

P
(%

)

Fig. 6. Loss and mAP graph, red line mAP curve, blue line Loss curve

The trained model has been evaluated on the prepared
datasets under different IoU thresholds. For the evaluation 0.5,
0.75, 0.85, and 0.9 IoU thresholds were used to measure the
defined metrics. The model evaluation result is summarized in
0 By analyzing the data, it is possible to conclude that the
current model performs excellently on 0.5 IoU threshold with
mAP of 78.6% – 98.9% along with all datasets. However, as
the IoU threshold increases, the model accuracy drops
significantly. It is possible to achieve a higher mAP on a larger
IoU threshold by increasing the dataset and longer training.
But that will affect the inference time.

140 1

3 112

129 12

14 101

75 66

68 47

27 114

116 1

(a) IoU Threshold: 50%
accuracy = 0.9844; misclass = 0.0156

(b) IoU Threshold: 75%
accuracy = 0.8984; misclass = 0.1016

(c) IoU Threshold: 85%
accuracy = 0.4766; misclass = 0.5234

(d) IoU Threshold: 90%
accuracy = 0.1085; misclass = 0.8915

Positive Negative Positive Negative

Po
si

tiv
e

N
eg

at
iv

e
Po

si
tiv

e
N

eg
at

iv
e

Po
si

tiv
e

N
eg

at
iv

e
Po

si
tiv

e
N

eg
at

iv
e

Positive Negative Positive Negative

Predicted Predicted

A
ct

ua
l

A
ct

ua
l

Fig. 7. Confusion matrix results for Dataset 1, (a) IoU threshold at 50%, (b)
IoU threshold at 75%, (c) IoU threshold at 85%, and (d) IoU threshold
at 90%.

TABLE I. MODEL EVALUATION RESULT

Dataset 1 Dataset 2 Dataset 3
 IoU thr. 0.50 0.75 0.85 0.90 0.50 0.75 0.85 0.90 0.50 0.75 0.85 0.90
 Accuracy 0.98 0.89 0.47 0.11 0.90 0.36 0.16 0.14 0.84 0.51 0.28 0.17
 Precision 0.98 0.90 0.52 0.19 0.85 0.43 0.17 0.08 0.82 0.44 0.18 0.06
 Recall 0.99 0.91 0.53 0.19 0.98 0.49 0.20 0.09 0.82 0.44 0.18 0.06
 F1-score 0.98 0.66 0.53 0.19 0.91 0.46 0.19 0.09 0.82 0.44 0.18 0.06
 IoU 0.83 0.77 0.46 0.17 0.64 0.36 0.15 0.07 0.61 0.37 0.16 0.05
 mAP (%) 98.9 89.7 32.4 5.01 97.0 24.9 3.96 0.85 78.6 27.0 4.80 0.62

IV. EXPERIMENTATION

A. Hardware setup
The experiment has been done on the copter which was

developed according to the AREIOM architecture. Besides the
copter itself, the main hardware components are the
companion computer and the camera setup. To make the UAS
lightweight, compact, portable, and low-power consuming,
the vision subsystem is realized as an embedded system. For
this reason, the FLIR industrial cameras have been selected
for navigation and inspection purposes due to their low
weight, compact size, and reasonable performance. The
navigation camera is a 3.2 Megapixel global shutter FLIR
Blackfly S camera with a Sony IMX252 sensor, which is
equipped with Tamron 3-14 mm focal length zoom lens. The
camera maximum resolution is 2048 x 1536 pixels, the
maximum frame rate is 55 fps, and the lens field of view
(horizontal × vertical) is from 105.4°×77.6° to 33.0°×24.8°.
The camera uses a USB 3.0 interface, and the maximum
throughput is limit to 380MBps.

The experiment has been carried out on two different
SBCs, which are Nvidia Jetson Nano and Nvidia Jetson
Xavier NX. Both of them have the necessary CUDA cores,
high-speed interface, and the same 64-bit architecture. The
Jetson Nano has a quad-core ARM Cortex-A57 CPU, 128
CUDA core Nvidia Maxwell GPU, 4 GB 64-bit LPDDR4
memory, and four USB 3.0 interface. Due to the GPU
performance, USB3.0 interface, and small form factor, this
device is the best low-cost option. On the other hand, the
Jetson Xavier has a 6-core Nvidia Carmel ARM CPU, 384
CUDA core Nvidia GPU, 8 GB 128-bit LPDDR4, and four
USB 3.1 interfaces, which makes it a better performing
alternative with a higher budget.

B. Experiment on the embedded platform
In this section, the trained model’s inference time is

mainly discussed. The insulator detection model has been
tested on the two target platform in different power modes. On
the Jetson Nano 5W and 10W power modes, and on the Jetson
Xavier NX 10W, 15W, and 20W power modes were used for
the experiment (see TABLE II.). The image processing can
be divided into image acquisition and image processing steps.

1) Image acquisition
In order to acquire frames from the FLIR industrial

cameras, the Spinnaker Software Development Kit is used.
Spinnaker is a Generic Interface Camera (GenICam) based
Application Programming Interface, which supports FLIR’s
USB vision cameras and provides necessary functionalities.

Batbayar Battseren et al. (ISCSET - 2021)

26

Companion Computer

USB 3.0
NIP …

(a)
Companion Computer

USB 3.0 ACQ Shared
Memory NIP …

…

(b)

Navigation
Camera

Navigation
Camera

Fig. 8. Image acquisition solutions, (a) Integrated acquisition, (b) Modular

acquisition

Fig. 8 illustrates the two image acquisition methods, which
are proposed for the system. Each of them has its advantages
and disadvantages.

The first option (Fig. 8(a)), the integrated acquisition is a
straightforward solution that does not require any additional
component and is relatively simple to implement. The NIP
acquires images from the camera and directly applies the
object detection model to it as a single process. However, this
integrated implementation of the image acquisition and image
processing would not allow other components to access the
same image feed simultaneously.

On the other hand, the second option (Fig. 8(b)), the
modular acquisition has relatively complex implementation
with separate components and provides a number of
possibilities to the system compared to the other alternative.
The main difference is the data flow of the image data. The
first component, Acquisition (ACQ) configures the camera,
reads the video frames with the help of the Spinnaker library,
and writes them to the Shared Memory as a byte array. The
shared memory is used for sharing the data for other processes,
due to some advantages like no data are explicitly moved,
high-speed data access, and no overhead. The blackboard
architecture is used to implement this data-sharing mechanism
[27]. In a nutshell, the blackboard architecture has three main
components, namely the Blackboard, which is a common
memory space where the data are stored, and the Knowledge
Sources, which are the processes that read and write data into
the memory. Lastly, the Control component selects the
knowledge sources to interact with the blackboard. There can
be any number of knowledge sources. According to the
AREIOM architecture, every software component is a
knowledge source. The second component NIP reads the
frames from the blackboard and applies the object detection
model to it. This makes the second solution more modular by
separating the image acquisition part from the image
consumer components. In addition, there can be multiple
detection modules and other components which are reading
from the shared memory at the same time.

The comparison of the both acquisition approaches results
is presented in the TABLE II. In the integrated acquisition
approach, the average image acquisition times were 2.042 ms
on Jetson Nano and 1.811 ms on Jetson Xavier NX. In
contrast, in modular acquisition implementation with shared
memory, the average acquisition times were 0.056 ms on
Jetson Nano and 0.077 ms on Jetson Xavier NX. The shared
memory based implementation decreased the acquisition time
by 1.7 ms to 1.9 ms. However, there is no big advancements
depending on the power modes.

TABLE II. EMBEDDED PLATFORM TEST RESULT

Device Jetson Nano
(128 CUDA cores)

Jetson Xavier NX
(384 CUDA cores)

Integrated Acquisition
Power mode 5W 10W Avg. 10W 15W 20W Avg.
Acquisition [ms] 2.246 1.839 2.042 2.057 1.723 1.655 1.811
Detection [ms] 111.1 75.67 93.39 24.09 19.739 18.42 20.75
FPS 9.0 13.21 11.10 41.50 50.66 54.28 48.81

Modular Acquisition
Power mode 5W 10W Avg. 10W 15W 20W Avg.
Acquisition [ms] 0.062 0.050 0.056 0.083 0.079 0.070 0.077
Detection [ms] 112.8 73.48 93.17 24.26 19.45 18.82 20.84
FPS 8.859 13.60 11.23 41.20 51.39 53.13 48.57

2) Image Processing

There are two possible approaches to predict the target
object with our trained YOLOv4 model: the OpenCV DNN
module and the Darknet module. Since OpenCV DNN module
is optimized for Intel processors, the inference time of the
insulator detector was 130.0 ms per frame on the ARM
processor. In contrast, the inference time of the Darknet
module was 73.48 ms per frame. Accordingly, the Darknet
module is selected for further test. TABLE II. presents the
measured inference time of the same insulator detector model
on different embedded devices. The same trained model
performed differently on different circumstances. For
example, the detection time was 112.8 ms on Jetson Nano in
5W mode, while it was 20.84 ms on Jetson Xavier NX in 20W
mode.

In addition, under the APOLI project, the traditional image
processing algorithm has been developed for insulator
detection, which is compared with the current DL-based
approach on TABLE III. The traditional image processing
approach was tested on the Odroid XU4 and Odroid H2
devices, particularly on a CPU. This algorithm is developed
without parallelism techniques for running on the CPU cores.
Likewise, the DL model is designed to run on the GPUs, and
the experiment has been done only on the devices equipped
with GPU. The Google Colab experiment result is also
included in TABLE III. , which is performed on the Tesla K80
graphic card.

TABLE III. COMPARISON OF THE INSULATOR DETECTION ALGORITHM
ON EMBEDDED PLATFORM

Detection
Method

Traditional
Image Processing

Deep-Learning based Model
YOLOv4 tiny

Device Odroid
XU4

Odroid
H2

Jetson
Nano

Jetson
Xavier

Google
Colab

Processing unit CPU CPU GPU GPU GPU
CUDA cores - - 128 384 4992
Image source Camera Camera Camera Camera File
Image resolution 1024x768 1024x768 1024x768 1024x768 416x416
Acquisition [ms] 7.140 1.140 0.050 0.070 0.106
Detection [ms] 175.330 65.030 73.489 18.820 14.743
FPS 5.480 15.110 13.607 53.134 67.344

The total frame rate of the application is defined by the
summation of the acquisition and detection time. Though the
detection time takes the biggest portion, as it decreases from
111.1 ms to 18.42 ms (see TABLE II.), the acquisition time
ratio increases from 1.98% to 8.24% of the total time.

Batbayar Battseren et al. (ISCSET - 2021)

27

However, the shared memory-based implementation has
shown significant advancement by decreasing the acquisition
time by 96.33% on average.

Fig. 9. Detection result of high voltage power line insulators

Fig. 9 shows the detection result of the YOLOv4-tiny
insulator detector in different conditions.

CONCLUSION

In this study, the DL-based insulator detector solution
developed, and the performance measured and compared on
different edge computing devices. In the training phase, we
have carefully collected the training dataset to reach higher
accuracy and robustness with fewer training data.
Furthermore, YOLOv4-tiny architecture is selected for the
implementing the real-time insulator detector for the
autonomous system.

The lightweight YOLOv4-tiny detector showed promising
results on the selected platforms even without any
optimization technique. The proposed methodology was able
to reach a maximum frame rate of 13.607 fps on a Jetson Nano
board. Meanwhile, it recorded a frame rate of 53.134 fps on
the Jetson Xavier NX SBC. In order to reach the
aforementioned frame rate, shared memory based data sharing
method proposed in the image acquisition stage, and it
outperformed the conventional method. Based on the obtained
data, the hardware configuration, such as the number of
CUDA core and the enabled power mode, have a significant
impact on the model’s performance.

On the other hand, the training approach, the optimization
method, and the dataset are also relevant factors that influence
the final model accuracy and the detection time. For this
reason, our ongoing research will be targeting the usage of
advanced training methods, and the optimization of the
current model to decrease the inference time and increase the
accuracy. In addition, the ongoing research will compare
different DNN architectures to find the optimal model
respecting the speed/accuracy tradeoff for the autonomous
aerial inspection system.

REFERENCES

[1] U. Tudevdagva, B. Battseren, W. Hardt, S. Blokzyl and M. Lippmann,
"UAV Based Fully Automated Inspection System for High Voltage
Transmission Lines," 12th International Forum on Strategic
Technology (IFOST 2017), Ulsan, Korea, May 2017

[2] R. Harradi, B. Battseren, A. Heller and W. Hardt, “AREIOM: Adaptive
Research Multicopter Platform,” 14th International Forum on Strategic
Technology (IFOST 2019), Tomsk, Russia, pp. 219-223, Oct 2019

[3] V. Kühn, R. Harradi. and W. Hardt, “Expert System for Adaptive
Flight Missions,” Chemnitzer Informatik-Berichte, Chemnitz,
Germany, June 2019

[4] M. Stephan, B. Battseren and U. Tudevdagva, “Autonomous
Unmanned Aerial Vehicle Development: MAVLink Abstraction
Layer,” International Symposium on Computer Science, Computer
Engineering and Educational Technology (ISCSET-2020), Lauta
Germany, pp. 45-49, Oct 2020

[5] B. Battseren, U. Tudevdagva, W. Hardt and A. Banerjee, "Image
Processing Based High Voltage Transmission Line Insulator Fault
Detection," Proceedings of 13th International Forum on Strategic
Technology (IFOST 2018), Harbin, China, pp. 955-960, June 2018

[6] M. S. Harras, “Detection of Physical Damages of High Voltage Power
Line Insulator by Image Processing,” M.S Thesis, Faculty of Computer
Science, TU Chemnitz, 2020

[7] U. Tudevdagva, B. Battseren, W. Hardt and G. V. Troshina, "Image
Processing Based Insulator Fault Detection Method," 2018 XIV
International Scientific-Technical Conference on Actual Problems of
Electronics Instrument Engineering (APEIE), Novosibirsk, Russia, pp.
579-583, Nov 2018

[8] T. Jabid and M. Z. Uddin, "Rotation invariant power line insulator
detection using local directional pattern and support vector machine,"
2016 International Conference on Innovations in Science, Engineering
and Technology (ICISET), 2016, pp. 1-4, doi:
10.1109/ICISET.2016.7856522.

[9] S. Saleh, C. Rellan, S. P. Surana, J. Nine and W. Hardt, “Collision
Warning Based on Multi-Object Detection and Distance Estimation,”
International Symposium on Computer Science, Computer
Engineering and Educational Technology (ISCSET-2020), Lauta
Germany, pp. 68-72, 2020

[10] S. Saleh, H. Saleh, M. A. Nazari and W. Hardt, “Outdoor Navigation
for Visually Impaired based on Deep Learning,” Proceedings of the 6th
International Conference Actual Problems of System and Software
Engineering, pp. 397-406, Nov 2019

[11] Ch. Surenjav, D. Byambaa, and U. Tudevdagva, “Deep-Learning-
Based Insulator Detection Algorithm Study,” Proceedings of MMT
2020 conference, Ulaanbaatar, Mongolia, pp. 28-32, 2020

[12] A. J. Chaudhry, “Burn-Mark Detection Based on Active Deep
Learning” M.S Thesis, Faculty of Computer Science, TU Chemnitz,
2021

[13] A. Naeem and S. Peter, “Real-Time On-Board Deep Learning Fault
Detection for Autonomous UAV Inspections” Electronics, vol. 10, pp.
1091, 2021

[14] A. Bochkovskiy, C.Y. Wang and H.Y.M. Liao, “YOLOv4: Optimal
Speed and Accuracy of Object Detection,” ArXiV, arXiv:2004.10934,
2020

[15] M. W. Adou, H. Xu and G. Chen, "Insulator Faults Detection Based on
Deep Learning," 2019 IEEE 13th International Conference on Anti-
counterfeiting, Security, and Identification (ASID), 2019, pp. 173-177,
doi: 10.1109/ICASID.2019.8925094.

[16] Z. Wang, X. Liu, H. Peng, L. Zheng, J. Gao and Y. Bao, "Railway
Insulator Detection Based on Adaptive Cascaded Convolutional Neural
Network," in IEEE Access, vol. 9, pp. 115676-115686, 2021, doi:
10.1109/ACCESS.2021.3105419.

[17] D. Sadykova, D. Pernebayeva, M. Bagheri and A. James, "IN-YOLO:
Real-Time Detection of Outdoor High Voltage Insulators Using UAV
Imaging," in IEEE Transactions on Power Delivery, vol. 35, no. 3, pp.
1599-1601, June 2020, doi: 10.1109/TPWRD.2019.2944741.

[18] X. Tao, D. Zhang, Z. Wang, X. Liu, H. Zhang and D. Xu, "Detection
of Power Line Insulator Defects Using Aerial Images Analyzed With
Convolutional Neural Networks," IEEE Transactions on Systems,
Man, and Cybernetics: Systems, vol. 50, no. 4, pp. 1486-1498, April
2020

Batbayar Battseren et al. (ISCSET - 2021)

28

[19] Y. Wang, J. Wang, F. Gao, P. Hu, L. Xi, J. Zhang, Y. Yu, J. Xue and
J. Li, "Detection and Recognition for Fault Insulator Based on Deep
Learning," 2018 11th International Congress on Image and Signal
Processing, BioMedical Engineering and Informatics (CISP-BMEI),
pp. 1-6, 2018

[20] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards Real-
Time Object Detection with Region Proposal Networks,” ArXiV,
arXiv:1506.01497v3, Jan 2016

[21] “Jetson Benchmarks,” Accessed on: Aug. 10, 2021. [Online].
Available: https://developer.nvidia.com/embedded/jetson-benchmarks

[22] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.Y. Fu, and
A.C. Berg, “SSD: Single Shot MultiBox Detector,” European
Conference on Computer Vision (ECCV 2016), Springer International
Publishing, pp. 21-37, 2016

[23] P. Warden, How many images do you need to train a neural network?,
Dec 14, 2017, Accessed on: June. 2, 2021. [Online]. Available:

https://petewarden.com/2017/12/14/how-many-images-do-you-need-
to-train-a-neural-network/

[24] “Jetson Nano: Deep Learning Inference Benchmarks” Accessed on:
June. 2, 2021. [Online]. Available: https://developer.nvidia.com/
embedded/jetson-nano-dl-inference- benchmarks

[25] J. Redmon and A. Farhadi, “YOLOv3: An Incremental Improvement,”
ArXiv, arXiv:1804.02767, Apr. 2018, Accessed: Aug. 26, 2021.
[Online]. Available: http://arxiv.org/abs/1804.02767

[26] Z. Jiang, L. Zhao, S. Li, and Y. Jia, “Real-time object detection method
based on improved YOLOv4-tiny,” ArXiv, arXiv:2011.04244, Dec.
2020, Accessed: Sep. 14, 2021. [Online]. Available:
http://arxiv.org/abs/2011.04244

[27] B. Hayes-Roth, “A Blackboard Architecture for Control,” Artificial
intelligence, vol.26, pp. 251-321, 1985

