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Abstract—In the past years, the object detection applications 
have witnessed a rapid increase in usage of deep-learning (DL) 
based solutions, due to their accurate object detection, and 
robustness to illumination, scale, clutter, rotation changes, etc. 
Therefore, DL-based approaches started to be used in real-time 
applications. In an autonomous aerial inspection system, the 
robust detection and time requirement are critical aspects for 
the real-time perception and decision making. However, most of 
the DL models are not suitable for the edge computing 
platforms, due to their heavy sizes and poor reliability. This 
paper presents the experimental results obtained from a 
YOLOv4-Tiny model with a CSPDarknet-53 backbone on 
different single board computers. The study demonstrates that 
the performance of the adopted approach is highly dependent 
on the target platform; and the real-time object detection is 
reachable in specific cases.
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I. INTRODUCTION

Unmanned aerial vehicles (UAV) have been used in the 
past years for different kinds of critical infrastructure 
inspection, due to the benefits that they offer. The UAV-based
inspection provides a number of advancements in the high 
voltage power line inspection process compared to the 
conventional methods. For instance, no human life is at risk, 
no voltage cut-offs, high-quality data collection, high 
accessibility, less time consumption, and lower cost. 
However, there are still some weaknesses in the UAV-based 
inspection which are mainly caused by external factors like 
the weather condition, the environmental difficulty, or by the 
pilot experience, response time, or fault.

The power line inspection is a highly automatable 
sequential process, and most of the object inspections can be 
performed using vision cameras. The Autonomous Power 
Line Inspection (APOLI) project addresses the 
abovementioned problem by offering an autonomous solution 
for these processes [1]. The advantages are that the 
autonomous system can perform repeated processes without 
any problem, have a better control and response time in strong 
environmental conditions, and provide a better quality 
inspection.

The unmanned aerial system (UAS) that was developed 
consists of three main components, which are the copter, the 

camera setup, and the companion computer. Technically, the 
copter could be any type of multi-copter that has enough 
payload to carry the autonomous system’s additional 
components. The flight controller should be open source or 
controllable by external commands. The camera setup is 
equipped with navigation and inspection cameras which are 
mounted on a 3-axis gimbal. The dual-camera configuration 
delivers simultaneously a wide-angle navigation view and a 
narrow-angle high-resolution inspection view. The 
companion computer is directly mounted on the copter in 
order to run the image processing and autonomous decision-
making algorithms in real-time.

In order to develop this type of autonomous system, we 
proposed an Adaptive Research Multicopter Platform 
(AREIOM) destined for being applied within the APOLI 
project [2]. Fig. 1 illustrates the AREIOM software and 
hardware architecture, where the software components are 
mapped on a dedicated hardware component. There are 
several software components developed to execute the 
inspection mission automatically, namely Expert System 
(EXS), MAVLink Abstraction Layer (MAL), Camera Gimbal 
Control (CGC), Acquisition (ACQ), Navigation Image 
Processing (NIP), and Inspection Mission Recorder (IMR).
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Fig. 1. AREIOM software and hardware architecture

The EXS plays a leading role in running the inspection 
mission and making real-time decisions [3], while the MAL 
sends and receives messages from the Flight Controller (FLC) 
[4]. Together, they work as a flight subsystem. At the same 
time, the ACQ, the NIP, the IMR, and the CGC are acting as 
a vision subsystem. The ACQ acquires the live video feed 
from the cameras and provides it to other processes like the
NIP and the IMR. The CGC points the cameras into the 
desired direction with the help of the NIP output. The NIP 
detects the inspection object, and the IMR records high-
resolution inspection data.
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In this paper, we discuss the navigation image processing 
part, specifically the deep-learning (DL) based insulator 
detection, including the model training and the experiments 
performed on different embedded devices. 

II. RELATED WORK 
Over the past decade, the DL approaches for object 

detection have seen a consistent increase. This increase was 
met with a high demand for inspection routines using UAVs 
equipped with cameras. With the help of edge computing 
devices and high-performing cameras, inspection routines 
based on DL became a topic of active research lately. 
Throughout the DL training and learning of image features, 
structures are detected accurately and at faster speeds. UAV-
based autonomous inspection system requires a continuous 
stable detection of the insulator string in order to control the 
flight and inspect the insulators.  

A. Feature-Based Insulator Detection 
We developed a traditional image processing algorithm for 

insulator detection, which detects the target object without any 
machine learning method and parallelism [5]. This approach 
detects the insulator string based on its unique features, which 
are symmetrical shape and repeated color pattern. Initial 
localization of the insulator takes place based on symmetry 
analysis. The aforementioned analysis extracts image features 
(pixel intensities, edges) and analyses the edges for symmetry 
in the Hough space. In the study, we tested the approach on 
lab images with a solid white background which led to a robust 
detection of insulators. The same approach was developed 
further for real-life images in [6]. To achieve the same result 
in a real-life scenario without using the DL, a color feature-
based signal representation analysis method was introduced. 
In addition to the previous method, this approach detects the 
repeated color pattern of the insulators on the symmetry axes, 
which completes the region of interest (ROI) of the insulator. 
Moreover, an insulator burn-mark damage detection method 
in [7] was improved and used in the real-life scenario in this 
study. 

The measured average detection frame rate was 15 fps on 
the machine with an i5 CPU and 8GB RAM configuration. 
Though this method was computationally expensive and very 
slow in terms of performance, it has been tested on the Odroid 
XU4 single board computer (SBC), and the average detection 
rate was only 5.48 fps. It also led to many false detections 
since the color feature could be affected by any external 
factors like illuminance, view angle, reflection, camera 
configuration, etc. 

Jabid et al. [8] defined an approach based on spatial 
features. The method makes use of morphological operations 
and defines a spatial model for the detected object. In their 
method, the concept of a sliding window based local 
directional pattern (LDP) feature is extracted and support 
vector machines are used for the classification of the extracted 
windows. 

B. Deep-Learning-Based Insulator Detection 
In the past year our team have already conducted several 

DL based solutions in related studies and projects [9, 10]. In 
these studies, DL were used in collision warning, outdoor 
navigation, and depth estimation application. In [11], DL-
based single insulator detector approach presented. In the 
Master Thesis report published at Chemnitz University of 

Technology [12], a student proposed a DL-based approach for 
burn-mark detection. A YOLOv5 network has been chosen, 
and the learning stage is performed with both passive and 
active approaches. The active learning approach allowed to 
have a lightweight model with similar or higher accuracy. 

Naeem et al. [13] presented a DL-based autonomous 
vision system to detect faults on insulators based on a 
YOLOv4-tiny network architecture [14]. To evaluate the 
performance of their model, the YOLOv4-tiny results were 
compared to YOLOv3-tiny network architecture on different 
edge-computing devices such as the Raspberry Pi 4, Nvidia 
Jetson Nano, Nvidia Jetson TX2, and Nvidia Jetson AGX 
Xavier. They concluded, using YOLOv4-tiny, real-time 
detection can be realized on-board of Nvidia Jetson AGX 
Xavier without a trade-off of accuracy. 

Adou et al. [15] proposed a method for insulator bunch-
drop detection based on deep learning. The authors opted for 
the YOLOv3 model to train their network. In fact, two labels 
were defined for the insulator and the bunch-drop. The model 
classifies the detected objects and allows to localize the 
insulator. Logistic regression is the tool used for performing 
classes probabilities and labels predictions within the YOLO 
model. The proposed method was able to perform well on a 
desktop, processing frames at 45 frames per second with a 
mAP of 83,52%. 

In [16], the authors defined a cascading approach 
composed of the detection network and the classification 
network. The first network allows to detect the insulators 
based on RPN, which are then fed to the classification network 
for fault detection. This allowed for the reduction of the 
computational cost, while the accuracy and the robustness of 
the model improved considerably.  

A different study targeted the detection of the insulator 
using the YOLOv2 model [17]. The proposed method used 
data augmentation to increase the size of their dataset and 
avoid over-fitting. Hence, they recorded a mAP of 88% with 
an average prediction time of 0,04 seconds, allowing them to 
run at real-time. 

A deep CNN cascading architecture is introduced in [18] 
based on the concatenation of VGG and ResNet in a Region-
Based Convolutional Neural Network (R-CNN) for the 
localization of defects on insulators. The cascading 
architecture allows for two-stage object detection. The 
localization of the insulator is based on a region-based 
proposal (RPN) approach and is then followed by the 
localization of defects in the proposed regions. Another 
research [19] based the localization of the insulator on a Faster 
R-CNN, an improved version of R-CNN that cuts the running 
time of the RPN [20]. 

In a benchmark published by Nvidia [21], several models 
with their image resolutions have been tested for inference on 
most edge computing devices produced by Nvidia, and the 
ResNet network along with YOLOv4-tiny and SSD (Single-
Shot Detection) networks perform best on embedded devices. 

In contrast to two-stage detection methods, Lui et al. [22] 
propose a single-shot detector (SSD) based on the VGG16 
model for feature extraction. The latter bases its prediction on 
21 class scores for every detected instance. By excluding the 
region proposal network (RPN), the network is able to meet 
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the real-time requirements while allowing for fair detection 
accuracy.

III. DEEP LEARNING MODEL TRAINING

Fig. 2 illustrates the main steps of the DL-based insulator 
detector implementation. The data preparation and model 
training points are discussed in this section. The model 
deployment is discussed in detail in the next chapter. 

Embedded Device

Google Colab

Data
Collection

Data
Labelling

Data
Augmentation

DNN Model
Training

Trained
Weight

Model
Evaluation

Best
Weight

Camera Detector
Inference Result

Data Preparation

Model Training

Model Deployment

Fig. 2. Workflow of the DL-based insulator detector implementation

A. Dataset Preparation
In the APOLI project, the main inspection object is the

high voltage power line insulator, which is an essential part in 
the power pole. It holds the wire without making any electrical 
connection with the power pole. The insulators are generally 
linked together to form what is called an insulator string, and 
the number of the insulator is defined by the voltage level. 
Though there are different types of insulators available on the 
market, the specific insulator targeted in this study is the PS-
70 glass insulator, which is commonly used in many countries 
(Fig. 3).

Insulator

Insulating glass

Cap

Fig. 3. High Voltage Power Line Insulator

From the computer vision perspective, insulators have 
their unique features. As they are rotating objects, they have 
symmetric representation on the image. Furthermore, as they 
are partially made of glass, they are reflective, and their color 
changes depending on the environment and the view angle.

1) Data collection
According to empirical bounds for training datasets on 

computer vision, a rule of thumb is 1,000 images per class 
[23], though this number can be reduced if pre-trained weights 
are used. The image resolution is 640×640 and the dataset is 
collected from real high voltage power line inspection videos, 
which are recorded under the APOLI project from 2016 to 

2019. The whole dataset is categorized into four distinct 
categories based on their quality and captured environment: 
good, average, bad, and indoor. The good dataset contains a 
huge diversification on images with different angles and 
backgrounds in good quality, whereas the average and bad 
datasets hold less quality and blurry images. The indoor 
images are captured in the lab in different lighting conditions. 
This variation of the dataset helps to make the model more 
robust, hence, to deal with the over-fitting problem.

After that, images are selected randomly from the training 
set based on a constant selection ratio. This ratio is selected 
heuristically: 35% of the image from the good category, 25% 
of the image from the average category, 20% of the image 
from the bad category, and 20% of the image from the indoor 
category.

2) Data augmentation
In order to provide more robustness to the network, data 

augmentation techniques are applied to the selected images. 
Detecting the insulator at different angles is a significant 
challenge when these kinds of images are not included in the 
dataset. This challenge is overcome by rotating and flipping 
the training images at a certain angle. Moreover, a salt and 
pepper filter was applied to make the model robust against the 
high-frequency noise. The following list depicts the three 
chosen augmentation techniques:

Rotation: Both 90° clockwise and anti-clockwise 
rotations are applied to create scenes with horizontal 
insulator strings. The dimension is preserved after 
rotation.

Flip: Only horizontal flip is applied. This is mainly 
to create scenes with inversed insulators.

Noise: A high pass filter is used. The purpose of this 
filter is to create scenes where the UAV’s camera 
feed is blurred by sudden UAV movements. A 2% 
salt-and-pepper filter is applied to each image to 
distort the high-frequency features.

A canvas of the original image and the augmented images 
are illustrated in Fig. 4.

(a) (b) (c)

(d) (e)

Fig. 4. Illustration of image samples with augmentation, (a) original image, 
(b) horizontal flipped image, (c) 90° anti-clockwise and (d) 
90°clockwise rotation, and (e) 2% salt & pepper noise is added in the 
original image.
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B. Model Training
Being computationally extensive, region proposals-based 

two-step object detection algorithms are not feasible for 
resourced constrained embedded systems. By compromising 
some accuracy, it is possible to gain a significantly higher 
inference speed with a regression-based one-stage approach. 
There are a few prominent one-stage object detection 
algorithms are available out there such as SSD and YOLO. To 
meet the edge computing requirements, a trade-off in accuracy 
is unavoidable. 

1) Model Selection
Nvidia Jetson Nano is considered as the main target 

platform for the inference phase in our application. An 
inference benchmark for DL-based object detection methods 
on Jetson Nano is developed by the Nvidia developers’ 
community [24]. In this benchmark, SSD with a mobilenet-v2 
backbone performed the inference at a faster speed compared 
to Tiny YOLOv3. Though the inference speed is a bit higher 
for SSD, the Tiny YOLOv3 showed a much better 
performance in terms of accuracy with a mean average 
precision (mAP) of 0.70 at an intersection over union (IoU) 
threshold of 0.5 on the MS COCO dataset [25]. The further 
success of the YOLO family, YOLOv4-tiny [26], allowed for 
an increase in the usability of object detection applications in 
edge computing systems.

The size and required computational power for YOLOv4-
tiny are much smaller compared to YOLOv4. It uses the 
CSPDarknet53-tiny network as the backbone which uses the 
CSPBlock module in cross SPN instead of the ResBlock 
module in the residual network of CSPDarknet53 (Fig. 5). 
Hence the numbers of convolutional layers are compressed. 
However, considerable precision is still maintained. To make 
the computation procedure more efficient, the LeakyReLU 
activation function is used in the YOLOv4-tiny instead of the 
Mish activation function. To increase the object detection 
speed, rather than using YOLOv4’s SPP and PAN, it uses two 
different scales feature maps that are 13×13 and 26×26 to 
predict the detection results.

The adopted methodology for the study is based on a 
YOLOv4-tiny network, a regression-based one-step object 
detection algorithm, and the CSPDarknet53-tiny model 
backbone.

CSPBlock
Input Backbone (CSPDarknet53-tiny)

Input OutputConv
3x3

Conv
3x3

Conv
3x3

Conv
1x1

Concat

Concat

Neck Head
FPNetwork Prediction

Fig. 5. Architecture of proposed YOLOv4-tiny model with CSPDarknet53-
tiny

2) Training Configuration
To build the CSPDarknet53-tiny environment some 

dependencies need to be fulfilled such as – OpenCV, Cuda 
Toolkit, cuDNN, and GPU architecture. To enhance this 
process, Google Colab with Tesla K80 GPU is used. The pre-
trained weights of YOLOv4-tiny are used for accelerating the 
training process and getting better accuracy. A few other 

configurations have been done to train the model. This optimal 
configuration has been made based on the official GitHub 
repository of YOLOv4. Hence, the model architecture is 
adjusted depending on the number of defined classes in the 
dataset. The configurations are:

Batch = 64
Subdivision = 16
Max batches = classes×2000, but not less than the 
number of training images and not less than 6000.
Steps = 80% and 90% of the max batches i.e., 
steps=4800; 5400.
Filters = (classes + 5) × 3 i.e., 18 for our one class.
Width = 416 & Height = 416.
Learning rate = 0.00261

The model is trained for 6000 epochs with this 
configuration. There are 9 weight files created once the 
training process is completed. One for every 1000 epochs, 
hence 6 in total. The other 3 weight files are – the best, final, 
and the last. We used the best weights file for our inference 
which provides the highest accuracy.

C. Model Evaluation
For the model evaluation, confusion matrix-based metrics 

are used. There are four main terms in the confusion matrix, 
namely True Positive (TP), True Negative (TN), False 
Positive (FP), and False Negative (FN), which are used for 
calculating the accuracy, precision, recall, and F1-score. The 
accuracy presents the number of correct classification over the 
total number of data (1). The precision represents what 
percentage of the positive prediction were true (2). The recall 
calculates what percentage of the actual positive were 
predicted correctly (3). The F1-score combines the precision 
and recall into a single metric (4). In addition, IoU score is 
used as an evaluation metric (5) measures the detection 
accuracy based on the ground truth and the prediction.= (1)= (2)= (3)1 = 2 (4)= (5)

Fig. 6 illustrates the calculated loss and mean average 
precision (mAP) of the proposed model during the training 
period. The combination of the precision and recall curve is 
called the precision-recall curve (PRC). The area under the 
PRC expresses the mAP. The higher the value of mAP, the 
better the accuracy of the model. The red line represents the 
mAP over the training iteration, while the blue line represents 
the loss. The mAP was 93,7 % after 6000 iterations. The 
binary cross-entropy is used for the loss function and the 
average loss was 0.0702.

In order to evaluate how the model performs, three 
different unseen datasets were prepared. The first dataset is 
collected from the inspection videos, which are recorded by 
Yuneec E90 high-resolution camera, while the second dataset 
is taken with FLIR Blackfly S camera. The third dataset is 
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gathered from an indoor setup with a FLIR camera. In order 
words, the first two datasets are collected from the same 
environment with different cameras, while the second and 
third datasets are collected from a different environment with 
the same camera. Fig. 7 presents the confusion matrix of the 
trained model under different IoU thresholds on the first 
dataset.

mAP = 93.7%
Average loss = 0.0702

Iteration = 6000

Iteration number

Lo
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m
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P
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Fig. 6. Loss and mAP graph, red line mAP curve, blue line Loss curve

The trained model has been evaluated on the prepared 
datasets under different IoU thresholds. For the evaluation 0.5, 
0.75, 0.85, and 0.9 IoU thresholds were used to measure the 
defined metrics. The model evaluation result is summarized in 
0 By analyzing the data, it is possible to conclude that the 
current model performs excellently on 0.5 IoU threshold with 
mAP of 78.6% – 98.9% along with all datasets. However, as 
the IoU threshold increases, the model accuracy drops 
significantly. It is possible to achieve a higher mAP on a larger 
IoU threshold by increasing the dataset and longer training. 
But that will affect the inference time.
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(a) IoU Threshold: 50%
accuracy = 0.9844; misclass = 0.0156

(b) IoU Threshold: 75%
accuracy = 0.8984; misclass = 0.1016

(c) IoU Threshold: 85%
accuracy = 0.4766; misclass = 0.5234

(d) IoU Threshold: 90%
accuracy = 0.1085; misclass = 0.8915
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Fig. 7. Confusion matrix results for Dataset 1, (a) IoU threshold at 50%, (b) 
IoU threshold at 75%, (c) IoU threshold at 85%, and (d) IoU threshold 
at 90%.

TABLE I. MODEL EVALUATION RESULT

Dataset 1 Dataset 2 Dataset 3
  IoU thr. 0.50 0.75 0.85 0.90 0.50 0.75 0.85 0.90 0.50 0.75 0.85 0.90
  Accuracy 0.98 0.89 0.47 0.11 0.90 0.36 0.16 0.14 0.84 0.51 0.28 0.17
  Precision 0.98 0.90 0.52 0.19 0.85 0.43 0.17 0.08 0.82 0.44 0.18 0.06
  Recall 0.99 0.91 0.53 0.19 0.98 0.49 0.20 0.09 0.82 0.44 0.18 0.06
  F1-score 0.98 0.66 0.53 0.19 0.91 0.46 0.19 0.09 0.82 0.44 0.18 0.06
  IoU 0.83 0.77 0.46 0.17 0.64 0.36 0.15 0.07 0.61 0.37 0.16 0.05
  mAP (%) 98.9 89.7 32.4 5.01 97.0 24.9 3.96 0.85 78.6 27.0 4.80 0.62

IV. EXPERIMENTATION

A. Hardware setup
The experiment has been done on the copter which was 

developed according to the AREIOM architecture. Besides the 
copter itself, the main hardware components are the 
companion computer and the camera setup. To make the UAS 
lightweight, compact, portable, and low-power consuming, 
the vision subsystem is realized as an embedded system. For 
this reason, the FLIR industrial cameras have been selected 
for navigation and inspection purposes due to their low 
weight, compact size, and reasonable performance. The 
navigation camera is a 3.2 Megapixel global shutter FLIR 
Blackfly S camera with a Sony IMX252 sensor, which is 
equipped with Tamron 3-14 mm focal length zoom lens. The 
camera maximum resolution is 2048 x 1536 pixels, the 
maximum frame rate is 55 fps, and the lens field of view 
(horizontal × vertical) is from 105.4°×77.6° to 33.0°×24.8°.
The camera uses a USB 3.0 interface, and the maximum 
throughput is limit to 380MBps.

The experiment has been carried out on two different 
SBCs, which are Nvidia Jetson Nano and Nvidia Jetson 
Xavier NX. Both of them have the necessary CUDA cores, 
high-speed interface, and the same 64-bit architecture. The 
Jetson Nano has a quad-core ARM Cortex-A57 CPU, 128 
CUDA core Nvidia Maxwell GPU, 4 GB 64-bit LPDDR4 
memory, and four USB 3.0 interface. Due to the GPU 
performance, USB3.0 interface, and small form factor, this 
device is the best low-cost option. On the other hand, the 
Jetson Xavier has a 6-core Nvidia Carmel ARM CPU, 384 
CUDA core Nvidia GPU, 8 GB 128-bit LPDDR4, and four 
USB 3.1 interfaces, which makes it a better performing 
alternative with a higher budget.

B. Experiment on the embedded platform
In this section, the trained model’s inference time is 

mainly discussed. The insulator detection model has been 
tested on the two target platform in different power modes. On 
the Jetson Nano 5W and 10W power modes, and on the Jetson 
Xavier NX 10W, 15W, and 20W power modes were used for 
the experiment (see TABLE II. ). The image processing can 
be divided into image acquisition and image processing steps.

1) Image acquisition
In order to acquire frames from the FLIR industrial 

cameras, the Spinnaker Software Development Kit is used. 
Spinnaker is a Generic Interface Camera (GenICam) based 
Application Programming Interface, which supports FLIR’s 
USB vision cameras and provides necessary functionalities. 
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Fig. 8. Image acquisition solutions, (a) Integrated acquisition, (b) Modular 

acquisition  

Fig. 8 illustrates the two image acquisition methods, which 
are proposed for the system. Each of them has its advantages 
and disadvantages. 

The first option (Fig. 8(a)), the integrated acquisition is a 
straightforward solution that does not require any additional 
component and is relatively simple to implement. The NIP 
acquires images from the camera and directly applies the 
object detection model to it as a single process. However, this 
integrated implementation of the image acquisition and image 
processing would not allow other components to access the 
same image feed simultaneously. 

On the other hand, the second option (Fig. 8(b)), the 
modular acquisition has relatively complex implementation 
with separate components and provides a number of 
possibilities to the system compared to the other alternative. 
The main difference is the data flow of the image data. The 
first component, Acquisition (ACQ) configures the camera, 
reads the video frames with the help of the Spinnaker library, 
and writes them to the Shared Memory as a byte array. The 
shared memory is used for sharing the data for other processes, 
due to some advantages like no data are explicitly moved, 
high-speed data access, and no overhead. The blackboard 
architecture is used to implement this data-sharing mechanism 
[27]. In a nutshell, the blackboard architecture has three main 
components, namely the Blackboard, which is a common 
memory space where the data are stored, and the Knowledge 
Sources, which are the processes that read and write data into 
the memory. Lastly, the Control component selects the 
knowledge sources to interact with the blackboard. There can 
be any number of knowledge sources. According to the 
AREIOM architecture, every software component is a 
knowledge source. The second component NIP reads the 
frames from the blackboard and applies the object detection 
model to it. This makes the second solution more modular by 
separating the image acquisition part from the image 
consumer components. In addition, there can be multiple 
detection modules and other components which are reading 
from the shared memory at the same time. 

The comparison of the both acquisition approaches results 
is presented in the TABLE II. In the integrated acquisition 
approach, the average image acquisition times were 2.042 ms 
on Jetson Nano and 1.811 ms on Jetson Xavier NX. In 
contrast, in modular acquisition implementation with shared 
memory, the average acquisition times were 0.056 ms on 
Jetson Nano and 0.077 ms on Jetson Xavier NX. The shared 
memory based implementation decreased the acquisition time 
by 1.7 ms to 1.9 ms. However, there is no big advancements 
depending on the power modes. 

TABLE II.  EMBEDDED PLATFORM TEST RESULT 

Device Jetson Nano 
(128 CUDA cores) 

Jetson Xavier NX 
(384 CUDA cores) 

Integrated Acquisition 
Power mode 5W 10W Avg. 10W 15W 20W Avg. 
Acquisition [ms] 2.246 1.839 2.042 2.057 1.723 1.655 1.811 
Detection [ms] 111.1 75.67 93.39 24.09 19.739 18.42 20.75 
FPS 9.0 13.21 11.10 41.50 50.66 54.28 48.81 

Modular Acquisition 
Power mode 5W 10W Avg. 10W 15W 20W Avg. 
Acquisition [ms] 0.062 0.050 0.056 0.083 0.079 0.070 0.077 
Detection [ms] 112.8 73.48 93.17 24.26 19.45 18.82 20.84 
FPS 8.859 13.60 11.23 41.20 51.39 53.13 48.57 

 
2) Image Processing 

There are two possible approaches to predict the target 
object with our trained YOLOv4 model: the OpenCV DNN 
module and the Darknet module. Since OpenCV DNN module 
is optimized for Intel processors, the inference time of the 
insulator detector was 130.0 ms per frame on the ARM 
processor. In contrast, the inference time of the Darknet 
module was 73.48 ms per frame. Accordingly, the Darknet 
module is selected for further test. TABLE II. presents the 
measured inference time of the same insulator detector model 
on different embedded devices. The same trained model 
performed differently on different circumstances. For 
example, the detection time was 112.8 ms on Jetson Nano in 
5W mode, while it was 20.84 ms on Jetson Xavier NX in 20W 
mode.  

In addition, under the APOLI project, the traditional image 
processing algorithm has been developed for insulator 
detection, which is compared with the current DL-based 
approach on  TABLE III. The traditional image processing 
approach was tested on the Odroid XU4 and Odroid H2 
devices, particularly on a CPU. This algorithm is developed 
without parallelism techniques for running on the CPU cores. 
Likewise, the DL model is designed to run on the GPUs, and 
the experiment has been done only on the devices equipped 
with GPU. The Google Colab experiment result is also 
included in TABLE III. , which is performed on the Tesla K80 
graphic card. 

TABLE III.  COMPARISON OF THE INSULATOR DETECTION ALGORITHM 
ON EMBEDDED PLATFORM 

Detection 
Method 

Traditional 
Image Processing 

Deep-Learning based Model 
YOLOv4 tiny 

Device Odroid 
XU4 

Odroid 
H2 

Jetson 
Nano 

Jetson 
Xavier 

Google 
Colab 

Processing unit CPU CPU GPU GPU GPU 
CUDA cores - - 128 384 4992 
Image source Camera Camera Camera Camera File 
Image resolution 1024x768 1024x768 1024x768 1024x768 416x416 
Acquisition [ms] 7.140 1.140 0.050 0.070 0.106 
Detection [ms] 175.330 65.030 73.489 18.820 14.743 
FPS 5.480 15.110 13.607 53.134 67.344 

 

The total frame rate of the application is defined by the 
summation of the acquisition and detection time. Though the 
detection time takes the biggest portion, as it decreases from 
111.1 ms to 18.42 ms (see TABLE II. ), the acquisition time 
ratio increases from 1.98% to 8.24% of the total time. 
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However, the shared memory-based implementation has 
shown significant advancement by decreasing the acquisition 
time by 96.33% on average.

Fig. 9. Detection result of high voltage power line insulators

Fig. 9 shows the detection result of the YOLOv4-tiny 
insulator detector in different conditions.

CONCLUSION

In this study, the DL-based insulator detector solution 
developed, and the performance measured and compared on 
different edge computing devices. In the training phase, we 
have carefully collected the training dataset to reach higher 
accuracy and robustness with fewer training data.
Furthermore, YOLOv4-tiny architecture is selected for the 
implementing the real-time insulator detector for the 
autonomous system.

The lightweight YOLOv4-tiny detector showed promising 
results on the selected platforms even without any 
optimization technique. The proposed methodology was able 
to reach a maximum frame rate of 13.607 fps on a Jetson Nano 
board. Meanwhile, it recorded a frame rate of 53.134 fps on 
the Jetson Xavier NX SBC. In order to reach the 
aforementioned frame rate, shared memory based data sharing 
method proposed in the image acquisition stage, and it 
outperformed the conventional method. Based on the obtained 
data, the hardware configuration, such as the number of 
CUDA core and the enabled power mode, have a significant 
impact on the model’s performance.

On the other hand, the training approach, the optimization 
method, and the dataset are also relevant factors that influence 
the final model accuracy and the detection time. For this 
reason, our ongoing research will be targeting the usage of 
advanced training methods, and the optimization of the 
current model to decrease the inference time and increase the 
accuracy. In addition, the ongoing research will compare 
different DNN architectures to find the optimal model 
respecting the speed/accuracy tradeoff for the autonomous 
aerial inspection system.
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